Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 2001;125:1206–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benga G, Popescu O, Borza V, Pop VI, Muresan A, Mocsy I, et al. Water permeability in human erythrocytes: identification of membrane proteins involved in water transport. Eur J Cell Biol. 1986;41:252–62.
CAS
PubMed
Google Scholar
Denker BM, Smith BL, Kuhajda FP, Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem. 1988;263:15634–42.
CAS
PubMed
Google Scholar
Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992;256:385–7.
Article
CAS
PubMed
Google Scholar
Maurel C, Reizer J, Schroeder JI, Chrispeels MJ. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 1993;12:2241–7.
CAS
PubMed
PubMed Central
Google Scholar
Chaumont F, Tyerman SD. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol. 2014;164:1600–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyerman SD, Niemietz CM, Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ. 2002;25:173–94.
Article
CAS
PubMed
Google Scholar
Maurel C, Verdoucq L, Luu D-T, Santoni V. Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol. 2008;59:595–624.
Article
CAS
PubMed
Google Scholar
Maurel C, Boursiac Y, Luu D-T, Santoni V, Shahzad Z, Verdoucq L. Aquaporins in plants. Physiol Rev. 2015;95:1321–58.
Article
CAS
PubMed
Google Scholar
Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol. 2005;46:1568–77.
Article
CAS
PubMed
Google Scholar
Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, et al. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 2001;126:1358–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, et al. Whole gene family expression and drought stress regulation of Aquaporins. Plant Mol Biol. 2005;59:469–84.
Article
CAS
PubMed
Google Scholar
Li G, Santoni V, Maurel C. Plant aquaporins: roles in plant physiology. Biochim. Biophys. Acta - Gen. Subj. 1840;2014:1574–82.
Google Scholar
Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett. 2005;579:5814–20.
Article
CAS
PubMed
Google Scholar
Gupta A, Sankararamakrishnan R. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol. 2009;9:134.
Article
PubMed
PubMed Central
Google Scholar
Danielson JÅ, Johanson U. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol. 2008;8:45.
Article
PubMed
PubMed Central
Google Scholar
Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, et al. Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot. 2012;63:2217–30. Oxford University Press
Article
CAS
PubMed
Google Scholar
Gambetta GA, Knipfer T, Fricke W, McElrone AJ. Aquaporins and root water uptake. Cham: Springer; 2017. p. 133–53.
Google Scholar
Heinen RB, Ye Q, Chaumont FX. Role of aquaporins in leaf physiology. J Exp Bot. 2009;60:2971–85.
Article
CAS
PubMed
Google Scholar
Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K. Genome-Wide Identification and Expression Analysis of Aquaporins in Tomato. Boudko D, editor. PLoS One. Public Libr Sci; 2013;8:e79052.
Choat B, Gambetta GA, Shackel KA, Matthews MA. Vascular function in grape berries across development and its relevance to apparent hydraulic isolation. Plant Physiol. 2009;151:1677–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fouquet R, Léon C, Ollat N, Barrieu F. Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep. 2008;27:1541–50.
Article
CAS
PubMed
Google Scholar
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4:10. BioMed Central
Article
PubMed
PubMed Central
Google Scholar
Adams KL, Wendel JF. Novel patterns of gene expression in polyploid plants. Sci Trends Genet. 1999;298:2157–67.
Google Scholar
Cohen D, Bogeat-Triboulot M-B, Vialet-Chabrand S, Merret R, Courty P-E, Moretti S, et al. Developmental and environmental regulation of aquaporin gene expression across Populus species: divergence or redundancy? Blazquez MA, editor. PLoS One. 2013;8:e55506. Public Library of Science
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaspar M, Bousser A, Sissoeff I, Roche O, Hoarau J, Mahe A. Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci. 2003;165:21–31.
Article
CAS
Google Scholar
Opitz N, Marcon C, Paschold A, Malik WA, Lithio A, Brandt R, et al. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. J Exp Bot. 2016;67:1095–107.
Article
CAS
PubMed
Google Scholar
Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M. Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol. 2008;49:30–9.
Article
CAS
PubMed
Google Scholar
Weig A, Deswarte C, Chrispeels MJ. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol. 1997;114:1347–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirch H-H, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, et al. Expression of Water Channel proteins in Mesembryanthemum crystallinum. Plant Physiol. 2000;123:111–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449:463–7.
Article
CAS
PubMed
Google Scholar
Shelden MC, Howitt SM, Kaiser BN, Tyerman SD. Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol. 2009;36:1065–78.
Article
CAS
Google Scholar
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong DCJ, Lopez Gutierrez R, Gambetta GA, Castellarin SD. Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine. DNA Res. 2017;24:311–26.
CAS
PubMed
PubMed Central
Google Scholar
Grimplet J, Adam-Blondon A-F, Bert P-F, Bitz O, Cantu D, Davies C, et al. The grapevine gene nomenclature system. BMC Genomics. 2014;15:1077.
Article
PubMed
PubMed Central
Google Scholar
Aubry S, Kelly S, Kümpers BMC, Smith-Unna RD, Hibberd JM. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis. Bomblies K, editor. PLoS Genet. 2014;10:e1004365. Public Library of Science
Article
PubMed
PubMed Central
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.Fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:W465–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyce K, Sievers F, Higgins DG. Instability in progressive multiple sequence alignment algorithms. Algorithms Mol Biol. 2015;10:26.
Article
PubMed
PubMed Central
Google Scholar
Wong DCJ, Schlechter R, Vannozzi A, Höll J, Hmmam I, Bogs J, et al. A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation. DNA Res. 2016;23:451–66.
Article
CAS
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Obayashi T, Kinoshita K. Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res. 2009;16:249–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma S, Shah S, Bohnert HJ, Snyder M, Dinesh-Kumar SP. Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways. Copenhaver GP, editor. PLoS Genet. 2013;9:e1003840.
Article
PubMed
PubMed Central
Google Scholar
Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell. 2012;24:3489–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57:781–803.
Article
CAS
PubMed
Google Scholar
Prouse MB, Campbell MM. The interaction between MYB proteins and their target DNA binding sites. Biochim Biophys Acta - Gene Regul Mech. 1819;2012:67–77.
Google Scholar
Lindemose S, Jensen MK, Van de Velde J, O’Shea C, Heyndrickx KS, Workman CT, et al. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana. Nucleic Acids Res. 2014;42:7681–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 2003;34:137–48.
Article
CAS
PubMed
Google Scholar
Reidt W, Wohlfarth T, Ellerström M, Czihal A, Tewes A, Ezcurra I, et al. Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J. 2000;21:401–8.
Article
CAS
PubMed
Google Scholar
Guyot R, Keller B. Ancestral genome duplication in rice. Genome. 2004;47:610–4.
Article
CAS
PubMed
Google Scholar
Yu J, Wang J, Lin W, Li S, Li H, Zhou J, et al. The genomes of Oryza sativa: a history of duplications. Bennetzen J, editor. PLoS Biol Sinauer. 2005;3:e38.
Article
Google Scholar
Falginella L, Castellarin SD, Testolin R, Gambetta GA, Morgante M, Di Gaspero G. Expansion and subfunctionalisation of flavonoid 3′,5′-hydroxylases in the grapevine lineage. BMC Genomics. 2010;11:562.
Article
PubMed
PubMed Central
Google Scholar
Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M, Henikoff S, et al. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol. 2012;12:130. BioMed Central
Article
CAS
PubMed
PubMed Central
Google Scholar
Knipfer T, Fei J, Gambetta GA, McElrone AJ, Shackel KA, Matthews MA. Water transport properties of the grape pedicel during fruit development: insights into xylem anatomy and function using microtomography. Plant Physiol. 2015;168:1590–602. American Society of Plant Biologists
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogiers SY, Coetzee ZA, Walker RR, Deloire A, Tyerman SD. Potassium in the grape (Vitis vinifera L.) berry: transport and function. Front. Plant Sci. 2017;8:1629.
Google Scholar
Tyerman SD, Chaves MM, Barrieu F. Water Relations of the Grape Berry and Aquaporins. In: Gerós H, Chaves MM, Delrot S, editors. Biochem. grape berry. Potomac: Bentham Science; 2012. p. 3–22.
Cramer GR, Ghan R, Schlauch KA, Tillett RL, Heymann H, Ferrarini A, et al. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin. BMC Plant Biol. 2014;14:370. BioMed Central
Article
PubMed
PubMed Central
Google Scholar
Gillis J, Pavlidis P. “Guilt by association” is the exception rather than the rule in gene networks. Rzhetsky a, editor. PLoS Comput Biol. 2012;8:e1002444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loyola R, Herrera D, Mas A, Wong DCJ, Höll J, Cavallini E, et al. The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. J Exp Bot. 2016;67:5429–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, Ruperti B, et al. A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis. Front Plant Sci. 2017;7:1979. Frontiers.
Article
PubMed
PubMed Central
Google Scholar
Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V, et al. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. J Exp Bot. 2016;67:3509–22. Oxford University Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vannozzi A, Wong DCJ, Höll J, Hmmam I, Matus JT, Bogs J, et al. Combinatorial Regulation of Stilbene Synthase Genes by WRKY and MYB Transcription Factors in Grapevine (Vitis vinifera L.). Plant Cell Physiol. 2018.
Wong DCJ, Ariani P, Castellarin S, Polverari A, Vandelle E. Co-expression network analysis and cis-regulatory element enrichment determine putative functions and regulatory mechanisms of grapevine ATL E3 ubiquitin ligases. Sci Rep. 2018;8:3151.
Article
PubMed
PubMed Central
Google Scholar
Pei H, Ma N, Tian J, Luo J, Chen J, Li J, et al. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol. 2013;163:775–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlosser J, Olsson N, Weis M, Reid K, Peng F, Lund S, et al. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma. 2008;232:255–65.
Article
CAS
PubMed
Google Scholar
Chervin C, Tira-umphon A, Terrier N, Zouine M, Severac D, Roustan J-P. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Physiol Plant. 2008;134:534–46.
Article
CAS
PubMed
Google Scholar
Okubo-Kurihara E, Sano T, Higaki T, Kutsuna N, Hasezawa S. Acceleration of vacuolar regeneration and cell growth by overexpression of an aquaporin NtTIP1;1 in tobacco BY-2 cells. Plant Cell Physiol. 2009;50:151–60. Oxford University Press
Article
CAS
PubMed
Google Scholar
Chaumont F, Barrieu F, Herman EM, Chrispeels MJ. Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol. 1998;117:1143–52. American Society of Plant Biologists
Article
CAS
PubMed
PubMed Central
Google Scholar
Gambetta GA, Fei J, Rost TL, Knipfer T, Matthews MA, Shackel KA, et al. Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport. Plant Physiol. 2013;163:1254–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galán-Cobo A, Ramírez-Lorca R, Echevarría M. Role of aquaporins in cell proliferation: what else beyond water permeability? Channels. 2016;10:185–201.
Article
PubMed
PubMed Central
Google Scholar
Bienert GP, Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta - Gen Subj. 1840;2014:1596–604.
Google Scholar
Benabdellah K, Ruiz-Lozano JM, Aroca R. Hydrogen peroxide effects on root hydraulic properties and plasma membrane aquaporin regulation in Phaseolus vulgaris. Plant Mol Biol. 2009;70:647–61. Springer Netherlands
Article
CAS
PubMed
Google Scholar
Aroca R, Amodeo G, Fernández-Illescas S, Herman EM, Chaumont F, Chrispeels MJ. The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol. 2005;137:341–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH, Chung GC, Steudle E. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd. J Exp Bot. 2005;56:985–95.
Article
CAS
PubMed
Google Scholar
Boursiac Y, Boudet J, Postaire O, Luu D-T, Tournaire-Roux C, Maurel C. Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J. 2008;56:207–18.
Article
CAS
PubMed
Google Scholar
Tian S, Wang X, Li P, Wang H, Ji H, Xie J, et al. Plant aquaporin AtPIP1;4 links Apoplastic H 2 O 2 induction to disease immunity pathways. Plant Physiol. 2016;171:1635–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt R, Kunkowska AB, Schippers JHM. Role of reactive oxygen species during cell expansion in leaves. Plant Physiol. 2016;172:2098–106. American Society of Plant Biologists
Article
CAS
PubMed
PubMed Central
Google Scholar
Rae L, Lao NT, Kavanagh TA. Regulation of multiple aquaporin genes in Arabidopsis by a pair of recently duplicated DREB transcription factors. Planta. 2011;234:429–44.
Article
CAS
PubMed
Google Scholar
Zhu D, Wu Z, Cao G, Li J, Wei J, Tsuge T, et al. TRANSLUCENT GREEN, an ERF family transcription factor, controls water balance in Arabidopsis by activating the expression of aquaporin genes. Mol Plant. 2014;7:601–15.
Article
CAS
PubMed
Google Scholar
Hichri I, Muhovski Y, Clippe A, Žižková E, Dobrev PI, Motyka V, et al. SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant Cell Environ. 2016;39:62–79.
Article
CAS
PubMed
Google Scholar
Liao X, Guo X, Wang Q, Wang Y, Zhao D, Yao L, et al. Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J. 2017;89:510–26.
Article
CAS
PubMed
Google Scholar
Kim MJ, Ruzicka D, Shin R, Schachtman DP. The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant. 2012;5:1042–57.
Article
CAS
PubMed
Google Scholar
González-Morales SI, Chávez-Montes RA, Hayano-Kanashiro C, Alejo-Jacuinde G, Rico-Cambron TY, de Folter S, et al. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2016;113:E5232–41.
Article
PubMed
PubMed Central
Google Scholar
Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell. 2011;23:534–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, et al. The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiol. 2014;164:365–83.
Article
CAS
PubMed
Google Scholar
Ma N, Xue J, Li Y, Liu X, Dai F, Jia W, et al. Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion. Plant Physiol. 2008;148:894–907. American Society of Plant Biologists
Article
CAS
PubMed
PubMed Central
Google Scholar
Olaetxea M, Mora V, Bacaicoa E, Baigorri R, Garnica M, Fuentes M, et al. ABA-regulation of root hydraulic conductivity and aquaporin gene- expression is crucial to the plant shoot rise caused by rhizosphere humic acids. Plant Physiol. 2015.
Jang JY, Kim DG, Kim YO, Kim JS, Kang H. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol. 2004;54:713–25.
Article
CAS
PubMed
Google Scholar
Aroca R, Ferrante A, Vernieri P, Chrispeels MJ. Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot. 2006;98:1301–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morillon R, Chrispeels MJ. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Proc Natl Acad Sci U S A. National Academy of Sciences; 2001;98:14138–14143.
Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell Online. 2015;
Rattanakon S, Ghan R, Gambetta GA, Deluc LG, Schlauch KA, Cramer GR. Abscisic acid transcriptomic signaling varies with grapevine organ. BMC Plant Biol. 2016;16:72.
Article
PubMed
PubMed Central
Google Scholar
Wu G, Lin W-C, Huang T, Poethig RS, Springer PS, Kerstetter RA. KANADI1 regulates adaxial-abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRIC LEAVES2. Proc Natl Acad Sci U S A. 2008;105:16392–7. National Academy of Sciences
Article
CAS
PubMed
PubMed Central
Google Scholar