Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Ent. 2014;59:95–117.
Article
CAS
Google Scholar
Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann K. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol. 2013;69(2):352–64.
Article
CAS
PubMed
Google Scholar
Talavera G, Vila R. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evol Biol. 2011;11(1):315.
Article
PubMed
PubMed Central
Google Scholar
Simon S, Hadrys H. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol. 2013;69(2):393–403.
Article
CAS
PubMed
Google Scholar
Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 2011;9(3):e1000602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rota-Stabelli O, Pisani D. Serine codon-usage bias in deep phylogenomics: pancrustacean relationships as a case study. Syst Biol. 2013;62(1):121–3.
Article
CAS
PubMed
Google Scholar
Sheffield NC, Song H, Cameron SL, Whiting MF. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Syst Biol. 2009;58(4):381–94.
Article
PubMed
Google Scholar
Song H, Sheffield NC, Cameron SL, Miller KB, Whiting MF. When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Syst Entomol. 2010;35(3):429–48.
Article
Google Scholar
Pons J, Ribera I, Bertranpetit J, Balke M. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Mol Phylogenet Evol. 2010;56(2):796–807.
Article
CAS
PubMed
Google Scholar
Timmermans MJTN, Barton C, Haran J, Ahrens D, Culverwell CL, Ollikainen A, Dodsworth S, Foster PG, Bocak L, Vogler AP. Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biol Evol. 2016;8(1):161–75.
Article
CAS
Google Scholar
Song F, Li H, Jiang P, Zhou X, Liu J, Sun C, Vogler AP, Cai W. Capturing the phylogeny of Holometabola with mitochondrial genome data and bayesian site-heterogeneous mixture models. Genome Biol Evol. 2016;8(5):1411–26.
Article
PubMed
PubMed Central
Google Scholar
Li H, Shao R, Song N, Song F, Jiang P, Li Z, Cai W. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Sci Rep. 2015;5:8527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song N, An SH, Yin XM, Zhao T, Wang XY. Insufficient resolving power of mitogenome data in deciphering deep phylogeny of Holometabola. J Syst Evol. 2016;54(5):545–59.
Article
Google Scholar
Dowton M, Cameron SL, Austin AD, Whiting MF. Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the Hymenoptera–a lineage with both rapidly and slowly evolving mitochondrial genomes. Mol Phylogenet Evol. 2009;52(2):512–9.
Article
CAS
PubMed
Google Scholar
Li H, Shao R, Song F, Zhou X, Yang Q, Li Z, Cai W. Mitochondrial genomes of two Barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): contrasting rates in mitochondrial gene rearrangement between major lineages of Psocodea. PLoS One. 2013;8(4):e61685.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao R, Kirkness EF, Barker SC. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus. Genome Res. 2009;19(5):904–12.
Yuan ML, Zhang QL, Zhang L, Guo ZL, Liu YJ, Shen YY, Shao R. High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences. Mol Phylogenet Evol. 2016;104:99–111.
Article
PubMed
Google Scholar
Wang Y, Liu X, Winterton SL, Yan Y, Aspöck U, Aspöck H, Yang D. Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics. 2017;33(6):617–36.
Article
Google Scholar
Brinkmann H, Van der Giezen M, Zhou Y, De Raucourt GP, Philippe H. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol. 2005;54(5):743–57.
Article
PubMed
Google Scholar
Reyes A, Pesole G, Saccone C. Long-branch attraction phenomenon and the impact of among-site rate variation on rodent phylogeny. Gene. 2000;259(1):177–87.
Article
CAS
PubMed
Google Scholar
Simmons MP, Richardson D, Reddy AS. Incorporation of gap characters and lineage-specific regions into phylogenetic analyses of gene families from divergent clades: an example from the kinesin superfamily across eukaryotes. Cladistics. 2008;24(3):372–84.
Article
Google Scholar
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008;452(7188):745–9.
Article
CAS
PubMed
Google Scholar
Hedtke SM, Townsend TM, Hillis DM. Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol. 2006;55(3):522–9.
Article
PubMed
Google Scholar
Hillis DM. Inferring complex phytogenies. Nature. 1996;383(6596):130–1.
Article
CAS
PubMed
Google Scholar
Li T, Hua J, Wright AM, Cui Y, Xie Q, Bu W, Hillis DM. Long-branch attraction and the phylogeny of true water bugs (Hemiptera: Nepomorpha) as estimated from mitochondrial genomes. BMC Evol Biol. 2014;14:99.
Article
PubMed
PubMed Central
Google Scholar
Delsuc F, Phillips MJ, Penny D. Comment on "hexapod origins: monophyletic or paraphyletic?". Science. 2003;301(5639):1482.
Article
CAS
PubMed
Google Scholar
Phillips MJ, Delsuc F, Penny D. Genome-scale phylogeny and the detection of systematic biases. Mol Biol Evol. 2004;21(7):1455–8.
Article
CAS
PubMed
Google Scholar
Hassanin A. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol. 2006;38(1):100–16.
Article
CAS
PubMed
Google Scholar
Breinholt JW, Kawahara AY. Phylotranscriptomics: saturated third codon positions radically influence the estimation of trees based on next-gen data. Genome Biol Evol. 2013;5(11):2082–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lartillot N, Philippe HA. Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004;21(6):1095–109.
Article
CAS
PubMed
Google Scholar
Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25(17):2286–8.
Article
CAS
PubMed
Google Scholar
Husník F, Chrudimský T, Hypša V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol. 2011;9:87.
Article
PubMed
PubMed Central
Google Scholar
Morgan CC, Foster PG, Webb AE, Pisani D, Mcinerney JO, O’Connell MJ. Heterogeneous models place the root of the placental mammal phylogeny. Mol Biol Evol. 2013;30(9):2145–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baurain D, Brinkmann H, Philippe H. Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? Mol Biol Evol. 2007;24(1):6–9.
Article
CAS
PubMed
Google Scholar
Philippe H, Brinkmann H, Martinez P, Riutort M, Baguñà J. Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS One. 2007;2(8):e717.
Article
PubMed
PubMed Central
Google Scholar
Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H. Data from: additional molecular support for the new chordate phylogeny. Genesis. 2008;46(11):592–604.
Article
PubMed
Google Scholar
Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 2007;7(Suppl1):S4.
Article
PubMed
PubMed Central
Google Scholar
Weirauch C, Schuh RT. Systematics and evolution of Heteroptera: 25 years of progress. Annu Rev Entomol. 2011;56:487–510.
Article
CAS
PubMed
Google Scholar
Kerzhner IM. Fauna of the USSR. Bugs. Vol. 13, No. 2. Heteroptera of the family Nabidae. Leningrad: USSR Academy of Sciences, Zoological Institute, Nauka; 1981.
Google Scholar
Štys P, Kerzhner IM. The rank and nomenclature of higher taxa in recent Heteroptera. Acta Entomol Bohemoslov. 1975;72(2):65–79.
Google Scholar
Schuh RT, S̆tys P. Phylogenetic analysis of cimicomorphan family relationships (Heteroptera). J N Y Ent Soc. 1991;99:298–350.
Google Scholar
Li M, Tian Y, Zhao Y, Bu W. Higher level phylogeny and the first divergence time estimation of Heteropterar (Insecta: Hemiptera) based on multiple genes. PLoS One. 2012;7(2):e32152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian Y, Zhu W, Li M, Xie Q, Bu W. Influence of data conflict and molecular phylogeny of major clades in Cimicomorphan true bugs (Insecta: Hemiptera: Heteroptera). Mol Phylogenet Evol. 2008;47(2):581–97.
Article
CAS
PubMed
Google Scholar
Wang YH, Cui Y, Rédei D, Baňař P, Xie Q, Štys P, Damgaard J, Chen PP, Yi WB, Wang Y, Dang K, Li CR, Bu WJ. Phylogenetic divergences of the true bugs (Insecta: Hemiptera: Heteroptera), with emphasis on the aquatic lineages: the last piece of the aquatic insect jigsaw originated in the late Permian/early Triassic. Cladistics. 2016;32(4):390–405.
Article
Google Scholar
Schuh RT, Weirauch C, Wheeler WC. Phylogenetic relationships within the Cimicomorpha (Hemiptera: Heteroptera): a total-evidence analysis. Syst Entomol. 2009;34(1):15–48.
Article
Google Scholar
Wang YH, Wu HY, Rédei D, Xie Q, Chen Y, Chen PP, Dong ZE, Dang K, Damgaard J, Štys P, Wu YZ, Luo JY, Sun XY, Hartung V, Kuechler SM, Liu Y, Liu HX, Bu WJ. When did the ancestor of true bugs become stinky? Disentangling the phylogenomics of Hemiptera–Heteroptera. Cladistics. 2017; https://doi.org/10.1111/cla.12232.
Li H, Liu H, Cao L, Shi A, Yang H, Cai W. The complete mitochondrial genome of the damsel bug Alloeorhynchus bakeri (Hemiptera: Nabidae). Int J Biol Sci. 2012;8(1):93–107.
Article
CAS
PubMed
Google Scholar
Li H, Liu H, Shi A, Štys P, Zhou X, Cai W. The complete mitochondrial genome and novel gene arrangement of the unique-headed bug Stenopirates sp.(Hemiptera: Enicocephalidae). PLoS One. 2012;7(1):e29419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li T, Gao C, Cui Y, Xie Q, Bu W. The complete mitochondrial genome of the stalk-eyed bug Chauliops fallax Scott, and the monophyly of Malcidae (Hemiptera: Heteroptera). PLoS One. 2013;8(2):e55381.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang W, Yu W, Du Y. The complete mitochondrial genome of the sycamore lace bug Corythucha ciliata (Hemiptera: Tingidae). Gene. 2013;532(1):27–40.
Article
CAS
PubMed
Google Scholar
Kocher A, Guilbert E, Lhuillier E, Murienne J. Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. C R Biol. 2015;338(3):149–60.
Article
PubMed
Google Scholar
Li T, Yang J, Li Y, Cui Y, Xie Q, Bu W, Hillis DM. A mitochondrial genome of Rhyparochromidae (Hemiptera: Heteroptera) and a comparative analysis of related mitochondrial genomes. Sci Rep. 2016;6:35175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolokotronis SO, Foox J, Rosenfeld JA, Brugler MR, Reeves D, Benoit JB, Booth W, Robison G, Steffen M, Sakas Z. The mitogenome of the bed bug Cimex lectularius (Hemiptera: Cimicidae). Mitochondrial DNA part B Resources. 2016;1(1):425–7.
Article
Google Scholar
Li H, Leavengood JM, Chapman EG, Burkhardt D, Song F, Jiang P, Liu J, Zhou X, Cai W. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc Royal Soc. 2017;284:20171223.
Article
Google Scholar
Froeschner RC, Kormilev NA. Phymatidae or ambush bugs of the world: a synonymic list with keys to species, except Lophoscutus and Phymata (Hemiptera). Entomography. 1989;6:1–76.
Google Scholar
Maldonado J. Systematic catalogue of the Reduviidae of the world (Insecta: Heteroptera). Caribb J Sci. Special edition. Mayagüez: University of Puerto Rico; 1990. p. 1–694.
Google Scholar
Cassis G, Gross GF. Hemiptera: Heteroptera (Coleorrhyncha to Cimicomorpha). Catalogues of Australia (ed. by W. W. K. Houston and B. V. Maynard), Vol. 27.3A, p. 1–506. CSIRO Australia, Melbourne. 1995.
Guilbert E, Damgaard J, D'HAESE CA. Phylogeny of the lacebugs (Insecta: Heteroptera: Tingidae) using morphological and molecular data. Syst Entomol. 2014;39(3):431–41.
Article
Google Scholar
Kück P, Meid SA, Groß C, Wägele JW, Misof B. AliGROOVE – Visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support. BMC Bioinformatics. 2014;15:294.
Article
PubMed
PubMed Central
Google Scholar
Yuan ML, Zhang QL, Guo ZL, Wang J, Shen YY. The complete mitochondrial genome of Corizus tetraspilus (Hemiptera: Rhopalidae) and phylogenetic analysis of Pentatomomorpha. PLoS One. 2015;10(6):e0129003.
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62(4):611–5.
Article
CAS
PubMed
Google Scholar
Bergsten J. A review of long-branch attraction. Cladistics. 2005;21(2):163–93.
Article
Google Scholar
Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore JL, Telford MJ, Pisani D, Blaxter M, Lavrov DV. Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol Evol. 2010;2:425–40.
Article
PubMed
PubMed Central
Google Scholar
Taylor CR, Heglund NC, GMO M. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J Exp Biol. 1982;97:1–21.
CAS
PubMed
Google Scholar
Shen YY, Shi P, Sun YB, Zhang YP. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 2009;19(10):1760–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roques S, Fox CJ, Villasana MI, Rico C. The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: a detailed genomic comparison among closely related species of the Gadidae family. Gene. 2006;383(4):12–23.
Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci U S A. 2010;107(19):8666–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomasco IH, Lessa EP. The evolution of mitochondrial genomes in subterranean caviomorph rodents: adaptation against a background of purifying selection. Mol Phylogenet Evol. 2011;61(1):64–70.
Article
PubMed
Google Scholar
Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6(5):389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt T, Wu W, Goodman M, Grossman L. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase. Mol Biol Evol. 2001;18(4):563–9.
Article
CAS
PubMed
Google Scholar
Zsurka G, Kudina T, Peeva V, Hallmann K, Elger CE, Khrapko K, Kunz WS. Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans. BMC Evol Biol. 2010;10:270.
Cui Y, Xie Q, Hua J, Dang K, Zhou J, Liu X, Wang G, Yu X, Bu W. Phylogenomics of Hemiptera (Insecta: Paraneoptera) based on mitochondrial genomes. Syst Entomol. 2013;38(1):233–45.
Article
Google Scholar
Hua J, Li M, Dong P, Cui Y, Xie Q, Bu W. Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta: Hemiptera: Heteroptera). BMC Genomics. 2008;9:610.
Article
PubMed
PubMed Central
Google Scholar
Reineke A, Karlovsky P, CPW Z. Preparation and purification of DNA from insects for AFLP analysis. Insect Mol Biol. 1998;7(1):95–9.
Article
CAS
PubMed
Google Scholar
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2016;34(3):772–3.
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foster PG. Modeling compositional heterogeneity. Syst Biol. 2004;53(3):485–95.
Article
PubMed
Google Scholar
Swofford DL. PAUP v4.0b10: phylogenetic analysis using parsimony (and other methods). Sunderland: Sinauer Associates; 2002.
Google Scholar
Xia X, Xie Z. DAMBE: software package for data analysis in molecular biology and evolution. J Hered. 2001;92(4):371–3.
Article
CAS
PubMed
Google Scholar
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2.
Article
CAS
PubMed
Google Scholar
Fourment M, Gibbs MJ. PATRISTIC: a program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evol Biol. 2006;6:1.
Article
PubMed
PubMed Central
Google Scholar
Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–8.
Article
CAS
PubMed
Google Scholar
Zhou J, Liu X, Stones DS, Xie Q, Wang G. MrBayes on a graphics processing unit. Bioinformatics. 2011;27(9):1255–61.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–90.
Article
CAS
PubMed
Google Scholar
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57(5):758–71.
Article
PubMed
Google Scholar
Wu HY, Wang YH, Qiang X, Ke YL, Bu WJ. Molecular classification based on apomorphic amino acids (Arthropoda, Hexapoda): integrative taxonomy in the era of phylogenomics. Sci Rep. 2016;6:28308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marin B, Nowack ECM, Melkonian M. A plastid in the making: evidence for a second primary endosymbiosis. Protist. 2005;156(4):425–32.
Article
CAS
PubMed
Google Scholar