Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE, et al. The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest. 1979;63:449–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blei AT, Cordoba J. Hepatic encephalopathy. Am J Gastroenterol. 2001;96:1968–76.
Article
CAS
PubMed
Google Scholar
Bachmann C. Mechanisms of hyperammonemia. Clin Chem Lab Med. 2002;40:653–62.
Article
CAS
PubMed
Google Scholar
Al Sibae MR, McGuire BM. Current trends in the treatment of hepatic encephalopathy. Ther Clin Risk Manag. 2009;5:617–26.
CAS
PubMed
PubMed Central
Google Scholar
Fisman M, Gordon B, Feleki V, Helmes E, Appell J, Rabheru K. Hyperammonemia in Alzheimer's disease. Am J Psychiatry. 1985;142:71–3.
Article
CAS
PubMed
Google Scholar
Branconnier RJ, Dessain EC, McNiff ME, Cole JO. Blood ammonia and Alzheimer's disease. Am J Psychiatry. 1986;143:1313–4.
Article
CAS
PubMed
Google Scholar
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s disease. Biomed Res Int. 2016;2016:1–17.
Article
Google Scholar
Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep. 2426;2017:7.
Google Scholar
Xu J, Gordon JI. Honor thy symbionts. Proc Natl Acad Sci U S A. 2003;100:10452–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorbach SL. Medical microbiology: microbiology of the gastrointestinal tract. In: Baron S. Galveston, editor. The University of Texas Medical Branch at Galveston; 1996.
Worrell RT, Merk L, Matthews JB. Ammonium transport in the colonic crypt cell line,T84:role for rhesus glycoproteins and NKCC1. Am J Physiol Gastrointest Liver Physiol. 2008;294:G429–40.
Article
CAS
PubMed
Google Scholar
Wrong OM, Vince A. Urea and ammonia metabolism in the human large intestine. Proc Nutr Soc. 1984;43:77–86.
Article
CAS
PubMed
Google Scholar
Sanz Y, De Palma G. Gut microbiota and probiotics in modulation of epithelium and gut associated lymphoid tissue function. Int Rev Immunol. 2009;28:397–413.
Article
CAS
PubMed
Google Scholar
Nicaise C, Prozzi D, Viaene E, Moreno C, Gustot T, Quertinmont E, et al. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered lactobacillus plantarum in rodents. Hepatology. 2008;48:1184–92.
Article
CAS
PubMed
Google Scholar
Shen TD, Albenberg L, Bittinger K, Chehoud C, Chen YY, Judge CA, et al. Engineering the gut microbiota to treat hyperammonemia. J Clin Invest. 2015;125:2841–50.
Article
PubMed
PubMed Central
Google Scholar
Suzuki H, Yanaka A, Shibahara T, Matsui H, Nakahara A, Tanaka N, et al. Ammonia-induced apoptosis is accelerated at higher pH in gastric surface mucous cells. Am J Physiol Gastrointest Liver Physiol. 2002;283:G986–95.
Article
CAS
PubMed
Google Scholar
Zago M, Scaltriti E, Rossetti L, Guffanti A, Armiento A, Fornasari ME, et al. Characterization of the genome of the dairy lactobacillus helveticus bacteriophage ΦAQ113. Appl Environ Microbiol. 2013;79:4712–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahony J, van Sinderen D. Current taxonomy of phages infecting lactic acid bacteria. Front Microbiol. 2014;5:1–7.
Article
Google Scholar
Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. Real time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52:1501–10.
Article
PubMed
PubMed Central
Google Scholar
Schonert S, Buder T, Dahl MK. Properties of maltose-inducible alpha-glucosidase MalL (sucrase-isomaltase-maltase) in Bacillus subtilis: evidence for its contribution to maltodextrin utilization. Res Microbiol. 1999;150:167–77.
Article
CAS
PubMed
Google Scholar
Han N, Qiang YJ, Zhang W. ANItools web: a web tool for fast genome comparison within multiple bacterial strains. Database-Oxford. 2016;2016:baw084.
Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, et al. Complete genome sequence of the probiotic lactic acid bacterium lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A. 2005;102:3906–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh S, Roh H, Ko HJ, Kim S, Kim KH, Lee SE, et al. Complete genome sequencing of lactobacillus acidophilus 30SC, isolated from swine intestine. J Bacteriol. 2011;193:2882–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stahla B, Barrangou R. Complete genome sequence of probiotic strain lactobacillus acidophilus La-14. Genome Announc. 2013;1:e00376–13.
Google Scholar
Iartchouk O, Kozyavkin S, Karamychev V, Slesarev A. Complete genome sequence of lactobacillus acidophilus FSI4, isolated from yogurt. Genome Announc. 2015;3:e00166–15.
Article
PubMed
PubMed Central
Google Scholar
Kant R, Paulin L, Alatalo E, de Vos WM, Palva A. Genome sequence of lactobacillus amylovorus GRL1118, isolated from pig ileum. J Bacteriol. 2011;193:3147–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lerat E, Ochman H. Psi-phi: exploring the outer limits of bacterial pseudogenes. Genome Res. 2004;14:2273–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Harrison PM, Kunin V, Gerstein M. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol. 2004;5:R64.
Article
PubMed
PubMed Central
Google Scholar
Zafar N, Mazumder R, Seto D. CoreGenes: a computational tool for identifying and cataloging "core" genes in a set of small genomes. BMC Bioinf. 2002;3:12.
Article
Google Scholar
Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braissant O. Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab. 2010;100(Suppl 1):S3–S12.
Article
CAS
PubMed
Google Scholar
Burton BK. Inborn errors of metabolism in infancy: a guide to diagnosis. Pediatrics. 1998;102:E69.
Article
CAS
PubMed
Google Scholar
Haberle J. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders. Arch Biochem Biophys. 2013;536:101–8.
Article
CAS
PubMed
Google Scholar
Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.
Article
PubMed
PubMed Central
Google Scholar
Bajaj JS, Hylemon PB, Younossi Z. The intestinal microbiota and liver disease. Am J Gastroenterol Suppl. 2012;1:9–14.
Article
CAS
Google Scholar
Chung HJ, Yu JG, Lee IH, Liu MJ, Shen YF, Sharma SP, et al. Intestinal removal of free fatty acids from hosts by lactobacilli for the treatment of obesity. FEBS Open Bio. 2016;6:64–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein Cell. 2017;8:90–102.
Article
CAS
PubMed
Google Scholar
Umbrello G, Esposito S. Microbiota and neurologic diseases:potential effects of probiotics. J Transl Med. 2016;14:1–11.
Article
Google Scholar
Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 2015;9:1–15.
Article
PubMed
Google Scholar
Del Chierico F, Vernocchi P, Dallapiccola B, Putignani L. Mediterranean diet and health: food effects on gut microbiota and disease control. Int J Mol Sci. 2014;15:11678–99.
Article
PubMed
PubMed Central
Google Scholar
Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer's disease. Ann Neurol. 2006;59:912–21.
Article
PubMed
PubMed Central
Google Scholar
Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis. 2002;17:221–7.
Article
CAS
PubMed
Google Scholar
McGee RG, Bakens A, Wiley K, Riordan SM, Webster AC. Probiotics for patients with hepatic encephalopathy. Cochrane Database Syst Rev. 2011;11:805–7.
Google Scholar
Luo J, Wang T, Liang S, Hu X, Li W, Jin F. Ingestion of lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Sci China Life Sci. 2014;57:327–35.
Article
PubMed
Google Scholar
Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann General Psychiatry. 2017;16:1–10.
Article
Google Scholar
Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res. 1998;8:195–202.
Article
CAS
PubMed
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
van Hijum SAFT, Zomer AL, Kuipers OP, Kok J. Projector 2: contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies. Nucleic Acids Res. 2005;33:W560–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.
CAS
PubMed
Google Scholar
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.
Article
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC a quality control tool for high throughput sequence data. 2010; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiex T, Gouzy J, Moisan A, de Oliveira Y. FrameD: a flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences. Nucleic Acids Res. 2003;31:3738–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salzberg SL, Delcher AL, Kasif S, White O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 1998;26:544–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinf. 2003;4:41.
Article
Google Scholar
Zdobnov EM, Apweiler R. InterProScan-an integration platform for the signature recognition methods in InterPro. Bioinformatics. 2001;17:847–8.
Article
CAS
PubMed
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–30.
Article
CAS
PubMed
Google Scholar
Attwood TK, Croning MDR, Flower DR, Lewis AP, Mabey JE, Scordis P, et al. PRINTS-S: the database formerly known as PRINTS. Nucleic Acids Res. 2000;28:225–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sigrist CJA, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, et al. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 2010;38:D161–6.
Article
CAS
PubMed
Google Scholar
Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 2006;34:D257–60.
Article
CAS
PubMed
Google Scholar
Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res. 1996;24:21–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003;31:371–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertsemlidis A, Fondon JW, 3rd. Having a BLAST with bioinformatics (and avoiding BLASTphemy). Genome Biol. 2001;2:2002.1-2002.10.
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snyder EE, Kampanya N, Lu J, Nordberg EK, Karur HR, Shukla M, et al. PATRIC: the VBI PathoSystems resource integration center. Nucleic Acids Res. 2007;35:D401–6.
Article
CAS
PubMed
Google Scholar
Liu B, Pop M. ARDB-antibiotic resistance genes database. Nucleic Acids Res. 2009;37:D443–7.
Article
CAS
PubMed
Google Scholar
Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A. 2012;109:1691–6.
Article
CAS
PubMed
PubMed Central
Google Scholar