Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL, Paigen K. Evidence of a large-scale functional organization of mammalian chromosomes. PLoS Biol. 2007;5(5):e127. author reply e128
Article
PubMed
PubMed Central
Google Scholar
Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet. 2002;18(2):74–82.
Article
CAS
PubMed
Google Scholar
Rieseberg LH, Whitton J, Gardner K. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics. 1999;152(2):713–27.
CAS
PubMed
PubMed Central
Google Scholar
Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ, Rieseberg LH. Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics. 2005;171(1):291–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC. Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc. 2004;82(4):675–88.
Article
Google Scholar
Masly JP, Jones CD, Noor MA, Locke J, Orr HA. Gene transposition as a cause of hybrid sterility in drosophila. Science (New York, NY). 2006;313(5792):1448–50.
Article
CAS
Google Scholar
Basset P, Yannic G, Brunner H, Hausser J. Restricted gene flow at specific parts of the shrew genome in chromosomal hybrid zones. Evolution. 2006;60(8):1718–30.
Article
CAS
PubMed
Google Scholar
Stump AD, Pombi M, Goeddel L, Ribeiro JM, Wilder JA, della Torre A, Besansky NJ. Genetic exchange in 2La inversion heterokaryotypes of Anopheles gambiae. Insect Mol Biol. 2007;16(6):703–9.
Article
CAS
PubMed
Google Scholar
Panithanarak T, Hauffe HC, Dallas JF, Glover A, Ward RG, Searle JB. Linkage-dependent gene flow in a house mouse chromosomal hybrid zone. Evolution. 2004;58(1):184–92.
Article
PubMed
Google Scholar
Ryu SL, Murooka Y, Kaneko Y. Reciprocal translocation at duplicated RPL2 loci might cause speciation of Saccharomyces bayanus and Saccharomyces cerevisiae. Curr Genet. 1998;33(5):345–51.
Article
CAS
PubMed
Google Scholar
Delneri D, Colson I, Grammenoudi S, Roberts IN, Louis EJ, Oliver SG. Engineering evolution to study speciation in yeasts. Nature. 2003;422(6927):68–72.
Article
CAS
PubMed
Google Scholar
Avelar AT, Perfeito L, Gordo I, Ferreira MG. Genome architecture is a selectable trait that can be maintained by antagonistic pleiotropy. Nat Commun. 2013;4:2235.
PubMed
Google Scholar
Zanders SE, Eickbush MT, Yu JS, Kang JW, Fowler KR, Smith GR, Malik HS. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast. elife. 2014;3:e02630.
Article
PubMed
PubMed Central
Google Scholar
Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ. Chromosomal evolution in Saccharomyces. Nature. 2000;405(6785):451–4.
Article
CAS
PubMed
Google Scholar
Liti G, Barton DB, Louis EJ. Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics. 2006;174(2):839–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
White MJD. Modes of speciation. San Francisco, CA: W. H. Freeman; 1978.
Google Scholar
Noor MA, Grams KL, Bertucci LA, Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A. 2001;98(21):12084–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001;16(7):351–8.
Article
PubMed
Google Scholar
Navarro A, Barton NH. Chromosomal speciation and molecular divergence--accelerated evolution in rearranged chromosomes. Science (New York, NY). 2003;300(5617):321–4.
Article
CAS
Google Scholar
Coyne JA, Orr HA. Speciation. Sunderland, Mass: Sinauer Associates; 2004.
Google Scholar
Faria R, Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol. 2010;25(11):660–9.
Article
PubMed
Google Scholar
Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci U S A. 2007;104(14):5925–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabosky DL, Slater GJ, Alfaro ME. Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biol. 2012;10(8):e1001381.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butlin R, Bridle J, Schluter D. Speciation and patterns of diversity. Cambridge, UK. New York: Cambridge University Press; 2009.
Book
Google Scholar
McPeek MA, Brown JM. Clade age and not diversification rate explains species richness among animal taxa. Am Nat. 2007;169(4):E97–106.
Article
PubMed
Google Scholar
Rabosky DL, Donnellan SC, Talaba AL, Lovette IJ. Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade. Proc Biol Sci R Soc. 2007;274(1628):2915–23.
Article
CAS
Google Scholar
Rabosky DL. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol Lett. 2009;12(8):735–43.
Article
PubMed
Google Scholar
Ainsworth GC, Bisby GR, Kirk PM, CABI Bioscience. Ainsworth & Bisby's dictionary of the fungi / by P.M. Kirk ... [et al.]; with the assistance of T.V. Andrianova ... [et al.]. 10th ed. Wallingford, Oxon: CABI; 2008.
Google Scholar
Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, et al. A higher-level phylogenetic classification of the Fungi. Mycol Res. 2007;111(Pt 5):509–47.
Article
PubMed
Google Scholar
Hittinger CT, Rokas A, Bai FY, Boekhout T, Goncalves P, Jeffries TW, Kominek J, Lachance MA, Libkind D, Rosa CA, et al. Genomics and the making of yeast biodiversity. Curr Opin Genet Dev. 2015;35:100–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, et al. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol. 2009;58(2):224–39.
Article
CAS
PubMed
Google Scholar
Prieto M, Wedin M. Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One. 2013;8(6):e65576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medvedev P, Stanciu M, Brudno M. Computational methods for discovering structural variation with next-generation sequencing. Nat Methods. 2009;6(11 Suppl):S13–20.
Article
CAS
PubMed
Google Scholar
Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6(9):677–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res. 2009;19(7):1270–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z, Snyder M, Gerstein MB. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 2009;10(2):R23.
Article
PubMed
PubMed Central
Google Scholar
Fischer G, Rocha EPC, Brunet F, Vergassola M, Dujon B. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages. PLoS Genet. 2006;2(3):253–61.
Article
CAS
Google Scholar
Huynen MA, Bork P. Measuring genome evolution. Proc Natl Acad Sci U S A. 1998;95(11):5849–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonnhammer EL, Ostlund G. InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 2015;43(Database issue):D234–9.
Article
CAS
PubMed
Google Scholar
James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature. 2006;443(7113):818–22.
Article
CAS
PubMed
Google Scholar
Rolland T, Dujon B. Yeasty clocks: dating genomic changes in yeasts. C R Biol. 2011;334(8-9):620–8.
Article
CAS
PubMed
Google Scholar
Nei M. Molecular evolutionary genetics. New York: Columbia University Press; 1987.
Google Scholar
Nei M, Xu P, Glazko G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc Natl Acad Sci U S A. 2001;98(5):2497–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nei M, Kumar S. Molecular evolution and phylogenetics. Oxford. New York: Oxford University Press; 2000.
Google Scholar
Uzzell T, Corbin KW. Fitting discrete probability distributions to evolutionary events. Science (New York, NY). 1971;172(3988):1089–96.
Article
CAS
Google Scholar
Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, Wapinski I, Roy S, Lin MF, Heiman DI, et al. Comparative functional genomics of the fission yeasts. Science (New York, NY). 2011;332(6032):930–6.
Article
CAS
Google Scholar
Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res. 2003;3(4):417–32.
Article
CAS
PubMed
Google Scholar
Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature. 2004;428(6983):617–24.
Article
CAS
PubMed
Google Scholar
Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997;387(6634):708–13.
Article
CAS
PubMed
Google Scholar
Gordon JL, Byrne KP, Wolfe KH. Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet. 2009;5(5):e1000485.
Article
PubMed
PubMed Central
Google Scholar
Seoighe C, Wolfe KH. Extent of genomic rearrangement after genome duplication in yeast. Proc Natl Acad Sci U S A. 1998;95(8):4447–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang Y, Hou X, Wang Y, Cui Z, Zhang Z, Zhu X, Xia L, Shen X, Cai H, Wang J, et al. Genome rearrangements of completely sequenced strains of Yersinia pestis. J Clin Microbiol. 2010;48(5):1619–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature. 2006;440(7082):341–5.
Article
CAS
PubMed
Google Scholar
Rachidi N, Barre P, Blondin B. Multiple ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet. 1999;261(4-5):841–50.
Article
CAS
PubMed
Google Scholar
Crombach A, Hogeweg P. Chromosome rearrangements and the evolution of genome structuring and adaptability. Mol Biol Evol. 2007;24(5):1130–9.
Article
CAS
PubMed
Google Scholar
Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol. 2012;10(6):417–30.
Article
CAS
PubMed
Google Scholar
de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 2013;23(8):1271–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, Figueroa M, Freitag M, Hane JK, Henrissat B, et al. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (Bethesda, Md). 2013;3(1):41–63.
Article
CAS
Google Scholar
Mieczkowski PA, Lemoine FJ, Petes TD. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair (Amst). 2006;5(9-10):1010–20.
Article
CAS
Google Scholar
Bleykasten-Grosshans C, Neuveglise C. Transposable elements in yeasts. C R Biol. 2011;334(8-9):679–86.
Article
CAS
PubMed
Google Scholar
Muszewska A, Hoffman-Sommer M, Grynberg M. LTR retrotransposons in fungi. PLoS One. 2011;6(12):e29425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, Dickinson WJ, Okamoto K, Kulkarni S, Hartl DL, et al. A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A. 2008;105(27):9272–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen KS, Manian P, Koeuth T, Potocki L, Zhao Q, Chinault AC, Lee CC, Lupski JR. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet. 1997;17(2):154–63.
Article
CAS
PubMed
Google Scholar
Lande R. The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity (Edinb). 1985;54(Pt 3):323–32.
Article
Google Scholar
Tsai IJ, Bensasson D, Burt A, Koufopanou V. Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc Natl Acad Sci U S A. 2008;105(12):4957–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dujon B. Yeast evolutionary genomics. Nature reviews. 2010;11(7):512–24.
Article
CAS
PubMed
Google Scholar
Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A, Roncoroni M, Voordeckers K, Miraglia L, et al. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell. 2016;166(6):1397–410. e1316
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.
Article
PubMed
PubMed Central
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM. Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–90.
Article
CAS
PubMed
Google Scholar
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21(9):2104–5.
Article
CAS
PubMed
Google Scholar
Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics. 2014;30(17):i541–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felsenstein J. PHYLIP - phylogeny inference package (version 3.2). Cladistics. 1989;5:164–6.
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17(1):132.
Article
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26(5):589–95.
Article
PubMed
PubMed Central
Google Scholar
Cameron DL, Schroder J, Penington JS, Do H, Molania R, Dobrovic A, Speed TP, Papenfuss AT. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 2017; 27(12):2050–2060.
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malhotra A, Lindberg M, Faust GG, Leibowitz ML, Clark RA, Layer RM, Quinlan AR, Hall IM. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res. 2013;23(5):762–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Li H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics. 2012;28(14):1838–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faust GG, Hall IM. YAHA: fast and flexible long-read alignment with optimal breakpoint detection. Bioinformatics. 2012;28(19):2417–24.
Article
CAS
PubMed
PubMed Central
Google Scholar