Kelly AM, Rubinstein NA. Why are fetal muscles slow? Nature. 1980;288:266–9.
Article
PubMed
CAS
Google Scholar
Lefaucheur L, Ecolan P, Plantard L, Gueguen N. New insights into muscle fiber types in the pig. J Histochem Cytochem. 2002;50:719–30.
Article
PubMed
CAS
Google Scholar
Drexler HC, Ruhs A, Konzer A, Mendler L, Bruckskotten M, Looso M, et al. On marathons and sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Mol Cell Proteomics. 2012;50:M111–010801.
Google Scholar
Rakus D, Gizak A, Deshmukh A, Wiśniewski JR. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle. J Proteome Res. 2015;14:1400–11.
Article
PubMed
CAS
Google Scholar
Mykles DL. Heterogeneity of myofibrillar proteins in lobster fast and slow muscles: variants of troponin, paramyosin, and myosin light chains comprise four distinct protein assemblages. J Exp Zool. 1985;234:23–32.
Article
PubMed
CAS
Google Scholar
Mykles DL. Histochemical and biochemical characterization of two slow fiber types in decapod crustacean muscles. J Exp Zool. 1988;245:232–43.
Article
PubMed
CAS
Google Scholar
Cotton JL, Mykles DL. Cloning of a crustacean myosin heavy chain isoform: exclusive expression in fast muscle. J Exp Zool. 1993;267:578–86.
Article
PubMed
CAS
Google Scholar
Grimaldi A, Tettamanti G, Brivio MF, Valvassori R, Eguileor MD. Differentiation of slow and fast fibers in tentacles of sepia officinalis, (mollusca). Develop Growth Differ. 2004;46:181–93.
Article
Google Scholar
Chantler PD. Scallop adductor muscles: structure and function. Dev Aquac Fish Sci. 2006;35:229–316.
Article
Google Scholar
Chantler PD. Scallop adductor muscles: structure and function. In: Shumway SE, Parsons GJ, editors. Scallops: Biology, Ecology, Aquaculture, and Fisheries (Vol. 40). Amsterdam: Elsevier; 2016. p. 161–207.
Chapter
Google Scholar
Szent-Györgyi AG, Chantler PD. Control of contraction by calcium binding to myosin. Myology. 1994;1:506–28.
Google Scholar
Geeves MA, Holmes KC. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728.
Article
PubMed
CAS
Google Scholar
Hooper SL, Thuma JB. Invertebrate muscles: muscle specific genes and proteins. Physiol Rev. 2005;85:1001–60.
Article
PubMed
CAS
Google Scholar
Yang Y, Gourinath S, Kovacs M, Nyitray L, Reutzel R, Himmel DM, et al. Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure. 2007;15:553–64.
Article
PubMed
CAS
Google Scholar
Zhao FQ, Craig R. Millisecond time-resolved changes occurring in Ca2+-regulated myosin filaments upon relaxation. J Mol Biol. 2008;381:256–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao FQ, Craig R, Woodhead JL. Head-head interaction characterises the relaxed state of Limulus muscle myosin filaments. J Mol Biol. 2009;385:423–31.
Article
PubMed
CAS
Google Scholar
Woodhead JL, Zhao FQ, Craig R. Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications. Proc Natl Acad Sci U S A. 2013;110:8561–6.
Article
PubMed
PubMed Central
Google Scholar
Hu Z, Taylor DW, Reedy MK, Edwards RJ, Taylor KA. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution. Sci Adv. 2016;2:e1600058.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mattisson AGM, Beechey RB. Some studies on cellular fractions of the adductor muscle of Pecten maximus. Exp Cell Res. 1966;41:227–43.
Article
PubMed
CAS
Google Scholar
Yamada A, Oiwa K. Myosin Mg-ATPase of molluscan muscles is slightly activated by F-actin under catch state in vitro. J Muscle Res Cell M. 2013;34:115–23.
Article
CAS
Google Scholar
Sulbarán G, Alamo L, Pinto A, Márquez G, Méndez F, Padrón R, et al. An invertebrate smooth muscle with striated muscle myosin filaments. Proc Natl Acad Sci U S A. 2015;112:5660–8.
Article
CAS
Google Scholar
Galler S. Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge. J Muscle Res Cell M. 2008;29:7399.
Google Scholar
Galler S, Litzlbauer J, Kröss M, Grassberger H. The highly efficient holding function of the mollusc ‘catch’ muscle is not based on decelerated myosin head cross-bridge cycles. Proc R Soc B. 2010;277:803–8.
Article
PubMed
Google Scholar
Funabara D, Osawa R, Ueda M, Kanoh S, Hartshorne DJ, Watabe S. Myosin loop 2 is involved in the formation of a trimeric complex of twitchin, actin, and myosin. J Biol Chem. 2009;284:18015–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vyatchin IG, Shevchenko UV, Lazarev SS, Matusovsky OS, Shelud'ko NS. Troponin-like regulation in muscle thin filaments of the mussel Crenomytilus grayanus (Bivalvia: Mytiloida). BBA-Proteins Proteom. 1854;2015:1444–50.
Google Scholar
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol. 2008;86:72–127.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guderley HE, Tremblay I. Swimming in scallops. In: Shumway SE, Parsons GJ, editors. Scallops: Biology, Ecology, Aquaculture, and Fisheries (Vol. 40). Amsterdam: Elsevier; 2016. p. 535–66.
Chapter
Google Scholar
Funabara D, Watabe S, Kanoh S. Phosphorylation properties of twitchin from yesso scallop catch and striated muscles. Fisheries Sci. 2015;81:1–10.
Article
CAS
Google Scholar
Sun X, Liu Z, Zhou L, Wu B, Dong Y, Yang A. Integration of next generation sequencing and EPR analysis to uncover molecular mechanism underlying shell color variation in scallops. PLoS One. 2016;11:e0161876.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang X, Chen Y, Pan J, Liu X, Chen H, Zhou X, et al. Itraq-based quantitative proteomic analysis reveals the distinct early embryo myofiber type characteristics involved in landrace and miniature pig. BMC Genomics. 2016;17:1–10.
Article
CAS
Google Scholar
Sun X, Yang A, Wu B, Zhou L, Liu Z. Characterization of the mantle transcriptome of Yesso scallop (Patinopecten yessoensis): identification of genes potentially involved in biomineralization and pigmentation. PLoS One. 2015;10:e0122967.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nyitray L, Jancso A, Ochiai Y, Graf L, Szent-Gyorgyi AG. Scallop striated and smooth muscle myosin heavy-chain isoforms are produced by alternative RNA splicing from a single gene. Proc Natl Acad Sci U S A. 1994;91:12686–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hasegawa Y. Isolation of a cDNA encoding the motor domain of nonmuscle myosin which is specifically expressed in the mantle pallial cell layer of scallop (Patinopecten yessoensis). J Biochem. 2000;128:983–8.
Article
PubMed
CAS
Google Scholar
Hasegawa Y, Araki T. Identification of a novel unconventional myosin from scallop mantle tissue. J Biochem. 2002;131:113–9.
Article
PubMed
CAS
Google Scholar
Hasegawa Y, Ikeda Y. Cloning of a cDNA encoding the tail region of non-muscle myosin II from the mantle tissue of scallop Patinopecten yessoensis. Fisheries Sci. 2008;74:1201–3.
Article
CAS
Google Scholar
Ogut O, Granzier H, Jin JP. Acidic and basic troponin T isoforms in mature fast-twitch skeletal muscle and effect on contractility. Am J Phys. 1999;276:1162–70.
Article
Google Scholar
Perry SV. Activation of the contractile mechanism by calcium. In: Engel AG, Franzini-Armstrong C, editors. Myology, vol. 1. 3rd ed. New York: McGraw-Hill; 2004. p. 281–306.
Google Scholar
Yumoto F, Tanokura M. Structural and functional analysis of troponins from scallop striated and human cardiac muscles. Adv Exp Med Biol. 2007;592:163–73.
Article
PubMed
Google Scholar
Ojima T, Tanaka H, Nishita K. Cloning and sequence of a cDNA encoding Akazara scallop troponin C. Arch Biochem Biophys. 1994;311:272–6.
Article
PubMed
CAS
Google Scholar
Ojima T, Koizumi N, Ueyama K, Inoue A, Nishita K. Functional role of Ca2+-binding site IV of scallop troponin C. J Biochem. 2000;128:803–9.
Article
PubMed
CAS
Google Scholar
Tanaka H, Takeya Y, Doi T, Yumoto F, Tanokura M, Ohtsuki I, et al. Comparative studies on the functional roles of N- and C-terminal regions of molluskan and vertebrate troponin-I. FEBS J. 2005;272:4475–86.
Article
PubMed
CAS
Google Scholar
Labeit S, Lahmers S, Burkart C, Chi F, Mcnabb M, Witt S, et al. Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins. J Mol Biol. 2006;362:664–81.
Article
PubMed
CAS
Google Scholar
Chi RJH. Smooth muscle titin interactions with alpha-actinin. The Florida State University, ProQuest Dissertations Publishing, 2007.
Granzier H, Labeit S. Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve. 2007;36:740–55.
Article
PubMed
CAS
Google Scholar
Winder SJ, Walsh MP. Calponin: thin filament-linked regulation of smooth muscle contraction. Cell Signal. 1993;5:677–86.
Article
PubMed
CAS
Google Scholar
Sirenko VV, Dobrzhanskaya AV, Shelud’Ko NS, Borovikov YS. Calponin-like protein from mussel smooth muscle is a competitive inhibitor of actomyosin ATPase. Biochemistry Biokhimiia. 2016;81:28–33.
Article
PubMed
CAS
Google Scholar
Borman MA, Freed TA, Haystead TAJ, Macdonald JA. The role of the calponin homology domain of smoothelin-like 1 (smtnl1) in myosin phosphatase inhibition and smooth muscle contraction. Mol Cell Biochem. 2009;327:93–100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Takeshi ENDO, Masaki T. Molecular properties and functions in vitro of chicken smooth-muscle α-actinin in comparison with those of striated-muscle α-actinins. J Biochem. 1982;92:1457–68.
Article
Google Scholar
Sjöblom B, Salmazo A, Djinović-Carugo K. α-Actinin structure and regulation. Cell Mol Life Sci. 2008;65:2688–701.
Article
PubMed
CAS
Google Scholar
Atkinson RA, Joseph C, Dal PF, Birolo L, Stier G, Pucci P, et al. Binding of alpha-actinin to titin: implications for z-disk assembly. Biochemistry. 2000;39:5255–64.
Article
PubMed
CAS
Google Scholar
Barone V, Randazzo D, Re VD, Sorrentino V, Rossi D. Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. J Muscle Res Cell M. 2015;36:1–15.
Article
Google Scholar
Sanger JW, Sanger JM. Sarcoplasmic reticulum in the adductor muscles of a Bermuda scallop: comparison of smooth versus cross-striated portions. Biol Bull. 1985;168:447–60.
Article
Google Scholar
Bönnemann CG, Thompson TG, Pf VDV, Goebel HH, Warlo I, Vollmers B, et al. Filamin c accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle. J Neurol Sci. 2003;206:71–8.
Article
PubMed
Google Scholar
Small JV, Fürst DO, De MJ. Localization of filamin in smooth muscle. J Cell Biol. 1986;102:210–20.
Article
PubMed
CAS
Google Scholar
Castellani L, Cohen C. Myosin rod phosphorylation and the catch state of molluscan muscles. Science. 1987;235:334–7.
Article
PubMed
CAS
Google Scholar
Johnson WH, Kahn JS, Szent-Gyorgyi AG. Paramyosin and contraction of catch muscles. Science. 1959;130:160–1.
Article
PubMed
CAS
Google Scholar
Chen GX, Tan RY, Gong ZX, Huang YP, Wang SZ, Cao TG. Paramyosin and the catch mechanism. Biophys Chem. 1988;29:147–53.
Article
PubMed
CAS
Google Scholar
Baguet F, Gillis JM. Energy cost of tonic contraction in lamellibranch catch muscle. J Physiol. 1968;198:127–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shelud’ko NS, Matusovsky OS, Permyakova TV, Matusovskaya GG. ‘Twitchin-actin linkage hypothesis’ for the catch mechanism in molluscan muscles: evidence that twitchin interacts with myosin, myorod, and the paramyosin core and affects properties of actomyosin. Archiv Biochem Biophys. 2007;466:125–35.
Article
CAS
Google Scholar
Butler TM, Mooers SU, Siegman MJ. Catch force links and the low to high force transition of myosin. Biophys J. 2006;90:3193–202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Butler TM, Mooers SU, Narayan SR, Siegman MJ. The N-terminal region of twichin binds thick and thin contractile filaments: redundant mechanisms of catch force maintenance. J Biol Chem. 2010;285:40654–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamada A, Yoshio M, Oiwa K, Nyitray L. Catchin, a novel protein in molluscan catch muscles, is produced by alternative splicing from the myosin heavy chain gene. J Mol Biol. 2000;295:169–78.
Article
PubMed
CAS
Google Scholar
Vibert P, Edelstein SM, Castellani L, Elliott BW. Mini-titins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity. J Muscle Res Cell M. 1993;14:598–607.
Article
CAS
Google Scholar
Andersen O, Torgersen JS, Pagander HH, Magnesen T, Johnston IA. Gene expression analyses of essential catch factors in the smooth and striated adductor muscles of larval, juvenile and adult great scallop (Pecten maximus). J Muscle Res Cell M. 2009;30:233–42.
Article
CAS
Google Scholar
Zwaan AD, Thompson RJ, Livingstone DR. Physiological and biochemical aspects of the valve snap and valve closure responses in the giant scallop Placopecten magellanicus. J Comp Physiol B. 1980;137:97–104.
Article
Google Scholar
Tremblay I, Guderley HE. Scallops show that muscle metabolic capacities reflect locomotor style and morphology. Physiol Biochem Zool. 2014;87:231–44.
Article
PubMed
CAS
Google Scholar
Storey KB. Effects of arginine phosphate and octopine on glycolytic enzyme activities from Sepia officinalis mantle muscle. J Comp Physiol B. 1981;142:501–7.
Article
CAS
Google Scholar
Tremblay I, Guderley HE, Himmelman JH. Swimming away or clamming up: the use of phasic and tonic adductor muscles during escape responses varies with shell morphology in scallops. J Exp Biol. 2012;215:4131–43.
Article
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29:644.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lobo. Basic local alignment search tool (blast). J Mol Biol. 2008;215:403–10.
Google Scholar
Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequence (refseq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005;33:D501–4.
Article
PubMed
CAS
Google Scholar
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–69.
Article
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:d480–4.
Article
PubMed
CAS
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.
Article
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg S. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
PubMed
CAS
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qin J, Gu F, Liu D, Yin C, Zhao S, Chen H, et al. Proteomic analysis of elite soybean jidou17 and its parents using itraq-based quantitative approaches. Proteome Sci. 2013;11:334–45.
Article
CAS
Google Scholar
Song H, Wang HY, Zhang T. Comprehensive and quantitative proteomic analysis of metamorphosis-related proteins in the veined rapa whelk, Rapana venosa. Int J Mol Sci. 2016;17:924.
Article
PubMed Central
Google Scholar