Babu KN, Sajina A, Minoo D, John CZ, Mini PM, Tushar KV, Rema J, Ravindran PN. Micropropagation of camphor tree (Cinnamomum camphora). Plant Cell Tissue Organ Cult. 2003;74(2):179–83. https://doi.org/10.1023/A:1023988110064.
Article
Google Scholar
Jiang H, Wang J, Song L, Cao X, Yao X, Tang F, Yue Y. GCxGC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules. 2016;21(4):423–35. https://doi.org/10.3390/molecules21040423.
Article
PubMed
Google Scholar
Pragadheesh VS, Saroj A, Yadav A, Chanotiya CS, Alam M, Samad A. Chemical characterization and antifungal activity of Cinnamomum camphora essential oil. Ind Crop Prod. 2013;49(Supplement C):628–33. https://doi.org/10.1016/j.indcrop.2013.06.023.
Article
CAS
Google Scholar
Guo X, Cui M, Deng M, Liu X, Huang X, Zhang X, Luo L. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves. Sci Rep. 2017;7:46579. https://doi.org/10.1038/srep46579.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi WY, Wen GY, Guo DX, Long GY, Liu YG. Study on chemical constituents of the essential oil and classification of types from Cinnamomum camphora. Acta Bot. 1989;209-214(Sin. 31):5.
Su J, Chen J, Liao S, Li L, Zhu L, Chen L. Composition and biological activities of the essential oil extracted from a novel plant of Cinnamomum camphora Chvar. Borneol. J Med Plants Res. 2012; https://doi.org/10.5897/JMPR12.157.
Su J, Lai H, Chen J, Lin L, Wong YS, Chen T, Li X. Natural Borneol, a Monoterpenoid compound, potentiates Selenocystine-induced apoptosis in human hepatocellular carcinoma cells by enhancement of cellular uptake and activation of ROS-mediated DNA damage. PLoS One. 2013;8(5):e63502. https://doi.org/10.1371/journal.pone.0063502.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koksal M, Jin Y, Coates RM, Croteau R, Christianson DW. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature. 2011;469(7328):116–20. https://doi.org/10.1038/nature09628.
Article
PubMed
CAS
Google Scholar
Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. Mol Plant. 2012;5(2):318–33. https://doi.org/10.1093/mp/sss015.
Article
PubMed
CAS
Google Scholar
Breitmaier E. Terpenes: flavors, fragrances, Pharmaca, pheromones. Wiley-VCH. 2006:1–3. https://doi.org/10.1002/9783527609949.ch1.
Cordoba E, Salmi M, León P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot. 2009;60(10):2933–43. https://doi.org/10.1093/jxb/erp190.
Article
PubMed
CAS
Google Scholar
Lichtenthaler HK. The 1-deoxy-d-XYLULOSE-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol. 1999;50(1):47–65. https://doi.org/10.1146/annurev.arplant.50.1.47.
Article
PubMed
CAS
Google Scholar
Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eyal Y. Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid Mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol. 2008;148(3):1219–28. https://doi.org/10.1104/pp.108.127951.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep. 1999;16(5):565–74. https://doi.org/10.1039/a709175c.
Article
PubMed
CAS
Google Scholar
Okada K, Kasahara H, Yamaguchi S, Kawaide H, Kamiya Y, Nojiri H, Yamane H. Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis. Plant Cell Physiol. 2008;49(4):604–16. https://doi.org/10.1093/pcp/pcn032.
Article
PubMed
CAS
Google Scholar
Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011;66(1):212–29. https://doi.org/10.1111/j.1365-313X.2011.04520.x.
Article
PubMed
CAS
Google Scholar
Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol. 2006;9(3):297–304. https://doi.org/10.1016/j.pbi.2006.03.014.
Article
PubMed
CAS
Google Scholar
Zulak KG, Lippert DN, Kuzyk MA, Domanski D, Chou T, Borchers CH, Bohlmann J. Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi-level study of methyl jasmonate-treated Norway spruce (Picea abies). Plant J. 2009;60(6):1015–30. https://doi.org/10.1111/j.1365-313X.2009.04020.x.
Article
PubMed
CAS
Google Scholar
Herde M, Gärtner K, Köllner TG, Fode B, Boland W, Gershenzon J, Gatz C, Tholl D. Identification and regulation of TPS04/GES, an Arabidopsis Geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16 HomoterpeneTMTT. Plant Cell. 2008;20(4):1152–68. https://doi.org/10.1105/tpc.106.049478.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matarese F, Cuzzola A, Scalabrelli G, D’Onofrio C. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera. Phytochemistry. 2014;105(Supplement C):12–24. https://doi.org/10.1016/j.phytochem.2014.06.007.
Article
PubMed
CAS
Google Scholar
Yang T, Li J, Wang H-X, Zeng Y. A geraniol-synthase gene from Cinnamomum tenuipilum. Phytochemistry. 2005;66(3):285–93. https://doi.org/10.1016/j.phytochem.2004.12.004.
Article
PubMed
CAS
Google Scholar
A. Nagegowda D, Dudareva N: Plant biochemistry and biotechnology of flavor compounds and essential oils. In: Medicinal Plant Biotechnology. Wiley-VCH Verlag GmbH; 2008: 469–492. doi: https://doi.org/10.1002/9783527619771.ch20.
Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC. Jasmonic acid is a key regulator of spider mite-induced volatile Terpenoid and methyl salicylate emission in tomato. Plant Physiol. 2004;135(4):2025–37. https://doi.org/10.1104/pp.104.048694.
Article
PubMed
PubMed Central
CAS
Google Scholar
Richter A, Seidl-Adams I, Köllner TG, Schaff C, Tumlinson JH, Degenhardt J. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Planta. 2015;241(6):1351–61. https://doi.org/10.1007/s00425-015-2254-z.
Article
PubMed
CAS
Google Scholar
Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14(6):671. https://doi.org/10.1093/bib/bbs046.
Article
PubMed
CAS
Google Scholar
Soetaert SS, Van Neste CM, Vandewoestyne ML, Head SR, Goossens A, Van Nieuwerburgh FC, Deforce DL. Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC Plant Biol. 2013;13(1):220. https://doi.org/10.1186/1471-2229-13-220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jin J, Panicker D, Wang Q, Kim MJ, Liu J, Yin J-L, Wong L, Jang I-C, Chua N-H, Sarojam R. Next generation sequencing unravels the biosynthetic ability of spearmint (Mentha spicata) peltate glandular trichomes through comparative transcriptomics. BMC Plant Biol. 2014;14(1):292. https://doi.org/10.1186/s12870-014-0292-5.
Article
PubMed
PubMed Central
Google Scholar
Jiang X, Wu Y, Xiao F, Xiong Z, Xu H. Transcriptome analysis for leaves of five chemical types in Cinnamomum camphora. Hereditas (Beijing). 2014;36(1):58–68. https://doi.org/10.3724/SP.J.1005.2014.0069.
Article
CAS
Google Scholar
Xu Z, Peters RJ, Weirather J, Luo H, Liao B, Zhang X, Zhu Y, Ji A, Zhang B, Hu S, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J. 2015;82(6):951–61. https://doi.org/10.1111/tpj.12865.
Article
PubMed
CAS
Google Scholar
Niu J, Hou X, Fang C, An J, Ha D, Qiu L, Ju Y, Zhao H, Du W, Qi J, et al. Transcriptome analysis of distinct Lindera glauca tissues revealed the differences in the unigenes related to terpenoid biosynthesis. Gene. 2015;559(1):22–30. https://doi.org/10.1016/j.gene.2015.01.002.
Article
PubMed
CAS
Google Scholar
Yang M, You W, Wu S, Fan Z, Xu B, Zhu M, Li X, Xiao Y. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine a. BMC Genomics. 2017;18(1):245. https://doi.org/10.1186/s12864-017-3615-8.
Article
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Xian A, Fan L, Raychowdhury R, Zeng Q. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29(7):644. https://doi.org/10.1038/nbt.1883.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014;15(7):410. https://doi.org/10.1186/PREACCEPT-2088857056122054.
Article
PubMed
PubMed Central
Google Scholar
Götz S, Garcíagómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420. https://doi.org/10.1093/nar/gkn176.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621. https://doi.org/10.1038/nmeth.1226.
Article
PubMed
CAS
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. https://doi.org/10.1186/1471-2105-12-323.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–5. https://doi.org/10.1073/pnas.1530509100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Alicia O. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–93. https://doi.org/10.1093/bioinformatics/bti430.
Article
PubMed
CAS
Google Scholar
Darbani B, Stewart CN, Noeparvar S, Borg S. Correction of gene expression data: performance-dependency on inter-replicate and inter-treatment biases. J Biotechnol. 2014;188(Supplement C):100–9. https://doi.org/10.1016/j.jbiotec.2014.08.012.
Article
PubMed
CAS
Google Scholar
Lin Y-L, Lee Y-R, Huang W-K, Chang S-T, Chu F-H. Characterization of S-(+)-linalool synthase from several provenances of Cinnamomum osmophloeum. Tree Genet Genomes. 2013;10(1):75–86. https://doi.org/10.1007/s11295-013-0665-1.
Article
Google Scholar
Chen L, Su J, Lin Li LB, Li W. A new source of natural D-borneol and its characteristic. J Med Plants Res. 2011;5(15):7.
Google Scholar
Cheng S-S, Lin C-Y, Yang C-K, Chen Y-J, Chung M-J, Chang S-T. Chemical polymorphism and composition of leaf essential oils of Cinnamomum kanehiraeUsing gas chromatography/mass spectrometry, cluster analysis, and principal component analysis. J Wood Chem Technol. 2015;35(3):207–19. https://doi.org/10.1080/02773813.2014.924967.
Article
CAS
Google Scholar
Chang Y-T, Chu F-H. Molecular cloning and characterization of monoterpene synthases from Litsea cubeba (Lour.) Persoon. Tree Genet Genomes. 2011;7(4):835–44. https://doi.org/10.1007/s11295-011-0377-3.
Article
Google Scholar
Yahyaa M, Matsuba Y, Brandt W, Doron-Faigenboim A, Bar E, McClain A, Davidovich-Rikanati R, Lewinsohn E, Pichersky E, Ibdah M. Identification, Functional Characterization, and Evolution of terpene synthases from a basal dicot. Plant Physiol. 2015;169(3):1683–97. https://doi.org/10.1104/pp.15.00930.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vranova E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol. 2013;64:665–700. https://doi.org/10.1146/annurev-arplant-050312-120116.
Article
PubMed
CAS
Google Scholar
Friesen JA, Rodwell VW. The 3-hydroxy-3-methylglutaryl coenzyme-a (HMG-CoA) reductases. Genome Biol. 2004;5(11):248. https://doi.org/10.1186/gb-2004-5-11-248.
Article
PubMed
PubMed Central
Google Scholar
Rohdich F, Lauw S, Kaiser J, Feicht R,P, Bacher A, Eisenreich W. Isoprenoid biosynthesis in plants – 2 C -methyl- d -erythritol-4-phosphate synthase (IspC protein) of Arabidopsis thaliana. FEBS J. 2006;273(19):4446. https://doi.org/10.1111/j.1742-4658.2006.05446.x.
Article
PubMed
CAS
Google Scholar
Degenhardt J, Kollner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 2009;70(15–16):1621–37. https://doi.org/10.1016/j.phytochem.2009.07.030.
Article
PubMed
CAS
Google Scholar
Okamoto S, Yu F, Harada H, Okajima T, Hattan J, Misawa N, Utsumi R. A short-chain dehydrogenase involved in terpene metabolism from Zingiber zerumbet. FEBS J. 2011;278(16):2892–900. https://doi.org/10.1111/j.1742-4658.2011.08211.x.
Article
PubMed
CAS
Google Scholar
Croteau R, Felton M, Karp F, Kjonaas R. Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiol. 1981;67(4):820–4. https://doi.org/10.1104/pp.67.4.820.
Article
PubMed
PubMed Central
CAS
Google Scholar
Whittington DA, Wise ML, Urbansky M, Coates RM, Croteau RB, Christianson DW. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc Natl Acad Sci U S A. 2002;99(24):15375–80. https://doi.org/10.1073/pnas.232591099.
Article
PubMed
PubMed Central
CAS
Google Scholar
Despinasse Y, Fiorucci S, Antonczak S, Moja S, Bony A, Nicole F, Baudino S, Magnard JL, Jullien F. Bornyl-diphosphate synthase from Lavandula angustifolia: a major monoterpene synthase involved in essential oil quality. Phytochemistry. 2017;137:24–33. https://doi.org/10.1016/j.phytochem.2017.01.015.
Article
PubMed
CAS
Google Scholar
Chen F. Biosynthesis and emission of Terpenoid volatiles from Arabidopsis flowers. Plant Cell Online. 2003;15(2):481–94. https://doi.org/10.1105/tpc.007989.
Article
CAS
Google Scholar
Dudareva N. (E)-beta-Ocimene and Myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell Online. 2003;15(5):1227–41. https://doi.org/10.1105/tpc.011015.
Article
CAS
Google Scholar
Martin DM, Faldt J, Bohlmann J. Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 2004;135(4):1908–27. https://doi.org/10.1104/pp.104.042028.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu GF, Liu JJ, He ZR, Wang FM, Yang H, Yan YF, Gao MJ, Gruber MY, Wan XC, Wei S. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant Cell Environ. 2017; https://doi.org/10.1111/pce.13080.