Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem. 2006;100:80–94.
Article
CAS
Google Scholar
Millero F. The marine inorganic carbon cycle. Chem Rev. 2007;107:308–41.
Article
CAS
Google Scholar
Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science (80- ). 1999;284:118–20.
Article
CAS
Google Scholar
Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, et al. Anthropogenic Ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature. 2005;437:681–866.
Article
CAS
Google Scholar
Reyes-Nivia C, Diaz-Pulido G, Kline D, Guldberg OH, Dove S. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob Chang Biol. 2013;19:1919–29.
Article
Google Scholar
Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, et al. Coral reefs under rapid climate change and ocean acidification. Science (80- ). 2007;318:1737–42.
Article
CAS
Google Scholar
Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol. 2013;19:1884–96.
Article
Google Scholar
Kroeker KJ, Kordas RL, Crim RN, Singh GG. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett. 2010;13:1419–34.
Article
Google Scholar
Johnson MD, Price NN, Smith JE. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ. 2014;2:e411.
Article
Google Scholar
Riebesell U, Gattuso J-P. Lessons learned from ocean acidification research. Nat Publ Gr. 2015;5:12–4.
CAS
Google Scholar
Bischoff WD, Bishop FC, Mackenzie FT. Biogenically produced magnesian calcite: inhomogeneities in chemical and physical properties: comparison with synthetic phases. Am Mineral. 1983;68:1183–8.
CAS
Google Scholar
Bilan MI, Usov AI. Polysaccharides of calcareous algae and their effect on the calcification process. Russ J Bioorganic Chem. 2001;27:2–16.
Article
CAS
Google Scholar
Mccoy SJ, Kamenos NA. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J Phycol. 2015;51:6–24.
Article
Google Scholar
Ries JB, Cohen AL, McCorkle DC. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology. 2009;37:1131–4.
Article
CAS
Google Scholar
Martin S, Gattuso J-P. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol. 2009;15:2089–100.
Article
Google Scholar
Ragazzola F, Foster LC, Form AU, Buscher J, Hansteen TH, Fietzke J. Phenotypic plasticity of coralline algae in a high CO2 world. Ecol Evol. 2013;3:3436–46.
PubMed
PubMed Central
Google Scholar
Mccoy SJ, Ragazzola F. Skeletal trade-offs in coralline algae in response to ocean acidification. Nat Clim Chang. 2014;4:1–5.
Article
Google Scholar
Büdenbender J, Riebesell U, Form A. Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser. 2011;441:79–87.
Article
Google Scholar
Kamenos NA, Burdett HL, Aloisio E, Findlay HS, Martin S, Longbone C, et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Glob Chang Biol. 2013;19:3621–8.
Article
Google Scholar
Noisette F, Egilsdottir H, Davoult D, Martin S. Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. J Exp Mar Bio Ecol. 2013;448:179–87. https://doi.org/10.1016/j.jembe.2013.07.006.
Article
CAS
Google Scholar
Johnson MD, Moriarty VW, Carpenter RC. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PLoS One. 2014;9:e87678.
Article
Google Scholar
Egilsdottir H, Noisette F, Noël LMLJ, Olafsson J, Martin S. Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Mar Biol. 2013;160:2103–12.
Article
CAS
Google Scholar
Hofmann L, Straub S, Bischof K. Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels. Mar Ecol Prog Ser. 2012;464:89–105.
Article
CAS
Google Scholar
Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, et al. Rhodolith beds are major CaCO3 bio-factories in the tropical south West Atlantic. PLoS One. 2012;7:e35171.
Article
CAS
Google Scholar
Foster MS. Rhodoliths: between rocks and soft places. J Phycol. 2001;37:659–67.
Article
Google Scholar
Nelson WA. Calcified macroalgae - critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res. 2009;60:787–801.
Article
CAS
Google Scholar
Foster MS, Amado Filho GM, Kamenos NA, Riosmena-Rodriguez R, Steller DL. Rhodoliths and rhodolith beds. Smithson Contrib Mar Sci. 2013;39:143–55.
Google Scholar
Cavalcanti GS, Gregoracci GB, Dos Santos EO, Silveira CB, Meirelles PM, Longo L, et al. Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3bed in the South Atlantic Ocean. ISME J. 2014;8:52–62. https://doi.org/10.1038/ismej.2013.133.
Article
CAS
PubMed
Google Scholar
Van Der Heijden LH, Kamenos NA. Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial. Biogeosciences. 2015;12:6429–41.
Article
Google Scholar
Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev. 2013;37:462–76.
Article
CAS
Google Scholar
Hester ER, Barott KL, Nulton J, Vermeij MJA, Rohwer FL. Stable and sporadic symbiotic communities of coral and algal holobionts. ISME J. 2016;10:1157–69. https://doi.org/10.1038/ismej.2015.190.
Article
CAS
PubMed
Google Scholar
Walter JM, Tschoeke DA, Meirelles PM, De Oliveira L, Leomil L, Tenório M, et al. Taxonomic and functional metagenomic signature of turfs in the Abrolhos reef system (Brazil). PLoS One. 2016;11:e0161168.
Article
Google Scholar
Minich JJ, Morris MM, Brown M, Doane M, Edwards MS, Michael TP, et al. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS ONE. 2018;13(2):e0192772. https://doi.org/10.1371/journal.pone.0192772.
Article
Google Scholar
Morris MM, Haggerty JM, Papudeshi BN, Vega AA, Edwards MS, Dinsdale EA. Nearshore pelagic microbial community abundance affects recruitment success of giant kelp, Macrocystis pyrifera. Front Microbiol. 2016;7:1800.
Article
Google Scholar
Minich JJ, Morris M, Brown M, Doane M, Edwards MS, Dinsdale E. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS One. 2018;13(2):e0192772.
Article
Google Scholar
Graham LE, Wilcox LW, Knack JJ. Why we need more algal metagenomes. J Phycol. 2015;51:1029–36.
Article
Google Scholar
Dittami SM, Duboscq-Bidot L, Perennou M, Gobet A, Corre E, Boyen C, et al. Host-microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. ISME J. 2016;10:51–63.
Article
CAS
Google Scholar
Dittami SM, Eveillard D, Tonon T. A metabolic approach to study algal-bacterial interactions in changing environments. Mol Ecol. 2014;23:1656–60.
Article
Google Scholar
Webster NS, Negri AP, Flores F, Humphrey C, Soo R, Botté ES, et al. Near-Future Ocean acidification causes differences in microbial associations within diverse coral reef taxa. Environ Microbiol Rep. 2013;5:243–51.
Article
CAS
Google Scholar
Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S, et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci Rep. 2016;6:19324. https://doi.org/10.1038/srep19324.
Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, et al. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008;9:386.
Article
CAS
Google Scholar
Gattuso JP, Frankignoulle M, Smith SV. Measurement of community metabolism and significance in the coral reef CO2 source-sink debate. Proc Natl Acad Sci U S A. 1999;96:13017–22.
Article
CAS
Google Scholar
Price NN, Hamilton SL, Tootell JS, Smith JE. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar Ecol Prog Ser. 2011;440:67–78.
Article
CAS
Google Scholar
Martin S, Cohu S, Vignot C, Zimmerman G, Gattuso JP. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2and temperature. Ecol Evol. 2013;3:676–93.
Article
Google Scholar
Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. J Phycol. 2009;45:1236–51.
Article
CAS
Google Scholar
Mcconnaughey TA, Whelan JF. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Rev. 1997;42:95–117.
Article
CAS
Google Scholar
Hofmann LC, Koch M, De Beer D. Biotic control of surface pH and evidence of light-induced H+pumping and Ca2+-H+exchange in a tropical crustose coralline alga. PLoS One. 2016;11:e0159057.
Article
Google Scholar
Hurd CL, Cornwall CE, Currie K, Hepburn CD, McGraw CM, Hunter KA, et al. Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility? Glob Chang Biol. 2011;17:3254–62.
Article
Google Scholar
Koch M, Bowes G, Ross C, Zhang XH. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol. 2013;19:103–32.
Article
Google Scholar
Borowitzka MA, Larkum AWD. Calcification in algae : mechanisms and the role of metabolism. In: Critical Reviews in Plant Science; 1987. p. 37–41.
Google Scholar
Johnson MD, Carpenter RC. Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. J Exp Mar Bio Ecol. 2012;434–435:94–101. https://doi.org/10.1016/j.jembe.2012.08.005.
Article
CAS
Google Scholar
Comeau S, Carpenter RC, Edmunds PJ. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc R Soc B. 2012;280:20122374. https://doi.org/10.1098/rspb.2012.2374.
Vásquez-Elizondo RM, Enríquez S. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci Rep. 2016;6:19030.
Article
Google Scholar
Shukla P, Edwards MS. Elevated pCO2 is less detrimental than increased temperature to early development of the giant kelp, Macrocystis pyrifera (Phaeophyceae, Laminariales). Phycologia. 2017;56:638–48.
Article
Google Scholar
Webster NS, Reusch TBH. Microbial contributions to the persistence of coral reefs. ISME J. 2017;11:2167–74.
Article
Google Scholar
Zaneveld JR, McMinds R, Thurber RV. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2:17121.
Article
CAS
Google Scholar
Mock T, Daines SJ, Geider R, Collins S, Metodiev M, Millar AJ, et al. Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes. Glob Chang Biol. 2016;22:61–75.
Article
Google Scholar
Weiss A, Martindale RC. Crustose coralline algae increased framework and diversity on ancient coral reefs. PLoS One. 2017;12:e0181637.
Article
Google Scholar
Hernández-kantún JJ, Riosmena-rodriguez R, Hall JM. Phylogenetic analysis of rhodolith formation in the Corallinales ( Rhodophyta ). Eur J Phycol. 2015;50:46–61.
Article
Google Scholar
Brown MB, Edwards MS, Kim KY. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae. 2014;29:203–15.
Article
CAS
Google Scholar
Hurlbert SH. Pseudoreplication and the design of ecological field experiments. Ecol Monogr. 1984;54:187–211.
Article
Google Scholar
Wernberg T, Smale DA, Thomsen MS. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob Chang Biol. 2012;18:1491–8.
Article
Google Scholar
Cornwall CE, Hurd CL. Experimental design in ocean acidification research: problems and solutions. ICES J Mar Sci. 2015;73:572–81.
Article
Google Scholar
Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One. 2011;6:e28983.
Article
CAS
Google Scholar
Millero FJ, Zhang J-Z, Lee K, Campbell DM. Titration alkalinity of seawater. Mar Chem. 1993;44:153–65.
Article
CAS
Google Scholar
Lewis E, Wallace D. Program Developed for CO2 system calcaulations, Ornl/Cdiac-105; 1998. p. 1–21.
Book
Google Scholar
Tompkins PA. Distribution, growth , and disturbance of Catalina Island rhodoliths. 2011.
Google Scholar
Platt T, Denman KL, Jassby AD. The mathematical representation and prediction of Phytoplankton Productivity. Fish Mar Serv. 1975;513:110.
Google Scholar
Price NN, Martz TR, Brainard RE, Smith JE. Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS One. 2012;7:e43843.
Article
CAS
Google Scholar
Garcia GD, Gregoracci GB, de O Santos E, Meirelles PM, Silva GGZ, Edwards R, et al. Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. Microb Ecol. 2013;65:1076–86.
Article
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
Article
CAS
Google Scholar
Gomez-Alvarez V, Teal TK, Schmidt TM. Systematic artifacts in metagenomes from complex microbial communities. ISME J. 2009;3:1314–7. https://doi.org/10.1038/ismej.2009.72.
Article
PubMed
Google Scholar
Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics. 2010;11:485.
Article
Google Scholar
Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.
Article
CAS
Google Scholar
Haggerty JM, Dinsdale EA. Distinct biogeographical patterns of marine bacterial taxonomy and functional genes. Glob Ecol Biogeogr. 2017;26:177–90.
Article
Google Scholar
Dinsdale EA, Edwards RA, Bailey BA, Tuba I, Akhter S, Mcnair K, et al. Multivariate analysis of functional metagenomes. Front Genet. 2013;4:41.
Article
CAS
Google Scholar
Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, et al. Functional metagenomic profiling of nine biomes. Nature. 2008;452:629–32.
Article
CAS
Google Scholar
Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26:715–21.
Article
CAS
Google Scholar
Chambers JM, Cleveland WS, Kleiner B, Tukey PA. Graphical methods for data analysis. Wadsworth: Wadsworth international group; 1983.
Google Scholar