Yacoubi R, Job C, Belghazi M, Chaibi W, Job D. Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. J Proteome Res. 2011;10(9):3891–903.
Article
CAS
Google Scholar
Jia C, Wu X, Chen M, Wang Y, Liu X, Gong P, Xu Q, Wang X, Gao H, Wang Z. Identification of genetic loci associated with crude protein and mineral concentrations in alfalfa (Medicago sativa) using association mapping. BMC Plant Biol. 2017;17:97.
Article
Google Scholar
Hojilla-Evangelista MP, Selling GW, Hatfield R, Digman M. Extraction, composition, and functional properties of dried alfalfa (Medicago sativa L.) leaf protein. J Sci Food Agr. 2017;97(3):882–8.
Article
CAS
Google Scholar
Lieberman M. Biosynthesis and action of ethylene. Annu Rev Plant Biol. 1979;30:533–91.
Article
CAS
Google Scholar
Reid PD, Strong HG, Lew F, Lewis LN. Cellulase and abscission in the red kidney bean (Phaseolus vulgaris). Plant Physiol. 1974;53:732–7.
Article
CAS
Google Scholar
Bleecker AB, Patterson SE. Last Exit: Senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell. 1997;9:1169–79.
Article
CAS
Google Scholar
Walker-Simmons M. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. 1987;84(1):61–6.
Article
CAS
Google Scholar
Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002;14(1):15–45.
Article
Google Scholar
Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano J, Schmelz EA, Solano R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell. 2007;19(5):1665–81.
Article
CAS
Google Scholar
Figueiredo MVB, Burity HA, Martínez CR, Chanway CP. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and rhizobium tropici. Appl Soil Ecol. 2008;40(1):182–8.
Article
Google Scholar
Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y. De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genomics. 2012;13:90.
Article
CAS
Google Scholar
Lovelli S, Sofo A, Perniola M, Scopa A. Abscisic acid and biomass partitioning in tomato under salinity. In: Ahmad P, Azooz M, Prasad M, editors. Ecophysiology and responses of plants under salt stress. New York: Spinger; 2013. p. 267–82.
Chapter
Google Scholar
Burg SP. Ethylene in plant growth. PNAS. 1973;70(2):591–7.
Article
CAS
Google Scholar
Davies PJ. Ethylene in plant biology. Cell. 1993;72(1):11–2.
Article
Google Scholar
Reig C, Martínez-Fuentes A, Mesejo C, Rodrigo MJ, Zacarías L, Agustí M. Loquat fruit lacks a ripening-associated autocatalytic rise in ethylene production. J Plant Growth Regul. 2016;35(1):232–44.
Article
CAS
Google Scholar
McMurchie EJ, McGlasson WB, Eaks IL. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature. 1972;237:235–6.
Article
CAS
Google Scholar
Machabé ES, Saini HS. Differences in the requirement for endogenous ethylene during germination of dormant and non-dormant seeds of Chenopodium album L. J Plant Physiol. 1991;138(1):97–101.
Article
Google Scholar
Fluhr R, Mattoo AK, Dilley DR. Ethylene-biosynthesis and perception. Crit Rev Plant Sci. 1996;15(5&6):479–523.
CAS
Google Scholar
Kitsaki CK, Vemmos SN, Tzoutzoukou CG. Changes of respiration rate, ethylene evolution, and abscisic acid content in developing inflorescence and young fruit of olive (Olea europaea L. cv. Konservolia). J Plant Growth Regul. 1999;18:1–7.
Article
CAS
Google Scholar
Addicott FT. Abscisic acid. New York: Praeger; 1983.
Google Scholar
Osborne DJ, Morgan PW. Abscission. Crit Rev Plant Sci. 1989;8(2):103–29.
Article
CAS
Google Scholar
Costa V, Angelini C, de Feis I, Ciccodicola A. Uncovering the complexity of transcriptomes with RNA-seq. Biomed Res Int. 2010. https://doi.org/10.1155/2010/853916.
Article
Google Scholar
Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res. 2010;20(9):1238–49.
Article
CAS
Google Scholar
Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics. 2010;11:726.
Article
CAS
Google Scholar
Zhang K, Xia X, Zhang Y, Gan S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J. 2012;69:667–78.
Article
CAS
Google Scholar
Kang YJ, Lee J, Kim YH, Lee S. Identification of tissue-specific gene clusters and orthologues of nodulation-related genes in Vigna angularis. Plant Genet Resour. 2014;12(S1):S21–6.
Article
CAS
Google Scholar
O'Rourke JA, Bolon Y, Bucciarelli B, Vance CP. Legume genomics: understanding biology through DNA and RNA sequencing. Annuls of Bot. 2014;113(7):1107–20.
Article
CAS
Google Scholar
Gailing O, Staton ME, Lane T, Schlarbaum SE, Nipper R, Owusu SA, Carlson JE. Construction of a framework genetic linkage map in Gleditsia triacanthos L. Plant Mol Biol Rep. 2017;35(2):177–87.
Article
CAS
Google Scholar
Lim PO, Kim HJ, Nam HG. Leaf senescence. Annu Rev Plant Biol. 2007;58:115–36.
Article
CAS
Google Scholar
Guo Y, Gan S. Leaf senescence: signals, execution, and regulation. In: Schatten GP, editor. Current topics in developmental biology. New York: Academic Press; 2005. p. 83–112.
Google Scholar
Yuan R. Effects of temperature on fruit thinning with ethephon in ‘Golden delicious’ apples. Sci Hortic-Amsterdam. 2007;113:8–12.
Article
CAS
Google Scholar
Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, Yuan R. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol. 2011;11:138.
Article
Google Scholar
De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 2003;33:543–55.
Article
CAS
Google Scholar
Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 2006;45:309–19.
Article
CAS
Google Scholar
Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR. Genetic control of abscisic acid biosynthesis in maize. PNAS. 1997;94:12235–40.
Article
CAS
Google Scholar
Qin X, Zeevaart JAD. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. PNAS. 1999;96:15354–61.
Article
CAS
Google Scholar
Tan B, Joseph LM, Deng W, Liu L, Li Q, Cline K, McCarty DR. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 2003;35:44–56.
Article
CAS
Google Scholar
Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 2000;23(3):363–74.
Article
CAS
Google Scholar
Schwartz SH, Qin X, Zeevaart JAD. Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem. 2001;276(27):25208–11.
Article
CAS
Google Scholar
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001;24(4):325–33.
Article
Google Scholar
Chang C, Stadler R. Ethylene hormone receptor action in Arabidopsis. BioEssays. 2001;23:619–27.
Article
CAS
Google Scholar
Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993;262(22):539–44.
Article
CAS
Google Scholar
Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. PNAS. 1998;95:5812–7.
Article
CAS
Google Scholar
O'Malley RC, Rodriguez FI, Esch JJ, Binder BM, O'Donnell P, Klee HJ, Bleecker AB. Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J. 2005;41:651–9.
Article
CAS
Google Scholar
Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin-response factors. PNAS. 1999;96:5844–9.
Article
CAS
Google Scholar
Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle T, Reed JW. AUXIN RESPONSW FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development. 2005;132:4563–74.
Article
CAS
Google Scholar
Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development. 2005;132:4107–18.
Article
CAS
Google Scholar
Fedoroff NV. Cross-talk in abscisic acid signaling. Sci Signal. 2002;140:10.
Article
Google Scholar
Mizuno T, Yamashino T. Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol. 2008;49(3):481–7.
Article
CAS
Google Scholar
Robertson FC, Skeffington AW, Gardner MJ, Webb AA. Interactions between circadian and hormonal signalling in plants. Plant Mol Biol. 2009;69:419–27.
Article
CAS
Google Scholar
Edwards KD, Akman OE, Knox K, Lumsden PJ, Thomson AW, Brown PE, Pokhilko A, Kozma-Bognar L, Nagy F, Rand DA, Millar AJ. Quantitative analysis of regulatory flexibility under changing environmental conditions. Mol Syst Biol. 2010;6:424.
Article
Google Scholar
Umezawa T. Systems biology approaches to abscisic acid signaling. J Plant Res. 2011;124:539–48.
Article
CAS
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, Wiliam T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq: reference generation and analysis with trinity. Nat Protoc. 2013;8(8):1494–521.
Article
CAS
Google Scholar
Guerriero G, Legay S, Hausman J. Alfalfa cellulose synthase gene expression under abiotic stress: a Hitchhiker’s guide to RT-qPCR normalization. PLoS One. 2014;9(8):e103808.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 - △△ CT method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar