Gillespie MJ, Stanley D, Chen H, Donald JA, Nicholas KR, Moore RJ, et al. Functional similarities between pigeon ‘Milk’ and mammalian Milk: induction of immune gene expression and modification of the microbiota. PLoS One. 2012;7(10):e48363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horseman ND, Buntin JD. Regulation of pigeon cropmilk secretion and parental behaviors by prolactin. Annu Rev Nutr. 1995;15(1):213–38.
Article
CAS
PubMed
Google Scholar
Dumont JN. Prolactin-induced cytologic changes in the mucosa of the pigeon crop during crop-“milk” formation. Z Zellforsch Mikrosk Anat. 1965;68(6):755–82.
Article
CAS
PubMed
Google Scholar
Weber W. Zur Histologie und Cytologie der Kropfmilchbildung der Taube. Z Zellforsch Mikrosk Anat. 1962;56(2):247–76.
Article
Google Scholar
Litwer G. Die histologischen Veränderungen der Kropfwandung bei Tauben, zur Zeit der Bebrütung und Ausfütterung ihrer Jungen. Z Zellforsch Mikrosk Anat. 1926;3(4):695–722.
Article
Google Scholar
Gillespie MJ, Crowley TM, Haring VR, Wilson SL, Harper JA, Payne JS, et al. Transcriptome analysis of pigeon milk production - role of cornification and triglyceride synthesis genes. BMC Genomics. 2013;14(1):169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillespie MJ, Haring VR, Mccoll KA, Monaghan P, Donald JA, Nicholas KR, et al. Histological and global gene expression analysis of the 'lactating' pigeon crop. BMC Genomics. 2011;12(1):452.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies WL. The composition of the crop milk of pigeons. Biochem J. 1939;33(6):898–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goudswaard J, van der Donk JA, van der Gaag I, Noordzij A. Peculiar IgA transfer in the pigeon from mother to squab. Dev Comp Immunol. 1979;3(2):307–19.
Article
CAS
PubMed
Google Scholar
Shetty S, Salimath PV, Hegde SN. Carbohydrates of pigeon milk and their changes in the first week of secretion. Arch Int Physiol Biochim Biophys. 1994;102(5):277–80.
CAS
PubMed
Google Scholar
Shetty S, Bharathi L, Shenoy KB, Hegde SN. Biochemical properties of pigeon milk and its effect on growth. J Comp Physiol B. 1992;162(7):632–6.
Article
CAS
Google Scholar
Shetty S, Hegde SN, Bharathi L. Purification of a growth factor from pigeon milk. Bba-Gen Subjects. 1992;1117(2):193–8.
Article
CAS
Google Scholar
Hegde SN. Composition of pigeon milk and its effect on growth in chicks. Indian J Exp Biol. 1973;11(3):238–9.
CAS
PubMed
Google Scholar
Guareschi C. Necessity of maternal alimentary factors for the growth of young pigeons. Boll Soc Ital Biol Sper. 1936;11:411–2.
CAS
Google Scholar
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.
Article
CAS
PubMed
Google Scholar
Suzuki HI, Miyazono K. Emerging complexity of microRNA generation cascades. J Biochem. 2011;149(1):15–25.
Article
CAS
PubMed
Google Scholar
Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136(1):26–36.
Article
CAS
PubMed
Google Scholar
Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1(1):7–7.
Article
PubMed
PubMed Central
Google Scholar
Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2010;9(1):1–8.
Google Scholar
Merchant ML, Powell DW, Wilkey DW, Cummins TD, Deegens JK, Rood IM, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteom Clin Appl. 2010;4(1):84–96.
Article
CAS
Google Scholar
Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliver Rev. 2013;65(3):357–67.
Article
CAS
Google Scholar
Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012;8(1):118–223.
Article
CAS
PubMed
Google Scholar
Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One. 2012;7(8):e43691.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma J, Wang C, Long K, Zhang H, Zhang J, Jin L, et al. Exosomal microRNAs in giant panda (Ailuropoda melanoleuca) breast milk: potential maternal regulators for the development of newborn cubs. Sci Rep. 2017;7(1):3507.
Article
PubMed
PubMed Central
Google Scholar
Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371(1):48–61.
Article
CAS
PubMed
Google Scholar
Huang Z, Jebb D, Teeling EC. Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat, Myotis myotis. BMC Genomics. 2016;17(1):906.
Article
PubMed
PubMed Central
Google Scholar
Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jennewein C, von Knethen A, Schmid T, Brune B. MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem. 2010;285(16):11846–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navarro A, Gaya A, Martinez A, Urbano-Ispizua A, Pons A, Balagué O, et al. MicroRNA expression profiling in classic Hodgkin lymphoma. Blood. 2008;111(5):2825–32.
Article
CAS
PubMed
Google Scholar
Wang Y, Xu G, Han J, Xu T. miR-200a-3p regulates TLR1 expression in bacterial challenged miiuy croaker. Dev Comp Immunol. 2016;63:181–6.
Article
CAS
PubMed
Google Scholar
Xu H, Yao Y, Smith LP, Nair V. MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines. Cancer Cell Int. 2010;10(1):15.
Article
PubMed
PubMed Central
Google Scholar
Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells. 2009;27(12):3093–102.
CAS
PubMed
Google Scholar
Wong CF, Tellam RL. MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis. J Biol Chem. 2008;283(15):9836–43.
Article
CAS
PubMed
Google Scholar
Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res. 2008;23(2):287–95.
Article
CAS
PubMed
Google Scholar
Lund AH. miR-10 in development and cancer. Cell Death Differ. 2010;17(2):209–14.
Article
CAS
PubMed
Google Scholar
Ahmad CM, Omaruddin RA, Brumbaugh CD, Tariq MA, Nader P. Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing. J Radiat Res. 2013;54(5):808–22.
Article
Google Scholar
Simpson MR, Brede G, Johansen J, Johnsen R, Storro O, Saetrom P, et al. Human breast Milk miRNA, maternal probiotic supplementation and atopic dermatitis in offspring. PLoS One. 2015;10(12):e0143496.
Article
PubMed
PubMed Central
Google Scholar
Chen T, Xi QY, Ye RS, Cheng X, Qi QE, Wang SB, et al. Exploration of microRNAs in porcine milk exosomes. BMC Genomics. 2014;15(1):100.
Article
PubMed
PubMed Central
Google Scholar
Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 2010;20(10):1128–37.
Article
CAS
PubMed
Google Scholar
Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14(11):2348–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, Chang MWF, et al. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell. 2013;12(3):446–58.
Article
CAS
PubMed
Google Scholar
Yu J, Peng H, Ruan Q, Fatima A, Getsios S, Lavker RM. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 2010;24(10):3950–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanhoutteghem A, Londero T, Ghinea N, Djian P. Serial cultivation of chicken keratinocytes, a composite cell type that accumulates lipids and synthesizes a novel beta-keratin. Differentiation. 2004;72(4):123–37.
Article
CAS
PubMed
Google Scholar
Yao J, Wang Y, Wang W, Wang N, Li H. Solexa sequencing analysis of chicken pre-adipocyte microRNAs. Biosci Biotechnol Biochem. 2014;75(1):54–61.
Article
Google Scholar
Arias N, Aguirre L, Fernandez-Quintela A, Gonzalez M, Lasa A, Miranda J, et al. Erratum to: MicroRNAs involved in the browning process of adipocytes. J Physiol Biochem. 2016;72(3):523–4.
Article
CAS
PubMed
Google Scholar
Hong L, Zheng M, Jia L, Li Y, Xu C, Wang T, et al. Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism. Sci Rep. 2016;6:31766.
Article
Google Scholar
Hu XC, Gao CQ, Wang XH, Yan HC, Chen ZS, Wang XQ. Crop milk protein is synthesised following activation of the IRS1/Akt/TOR signalling pathway in the domestic pigeon (Columba livia). Brit Poultry Sci. 2016;57(6):855–62.
Article
CAS
Google Scholar
Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, et al. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 2010;4(4):1921–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, Aswath K, Schroeder SG, Lippolis JD, Reinhardt TA, Sonstegard TS. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics. 2015;16(1):806.
Article
PubMed
PubMed Central
Google Scholar
Langmead B: Aligning short sequencing reads with bowtie. Curr Protoc Bioinformatics. 2010. Chapter 11: Unit 11.7.
Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7(1):191.
Article
PubMed
PubMed Central
Google Scholar
Santpere G, Lopezvalenzuela M, Petitmarty N, Navarro A, Espinosaparrilla Y. Differences in molecular evolutionary rates among microRNAs in the human and chimpanzee genomes. BMC Genomics. 2016;17(1):528.
Article
PubMed
PubMed Central
Google Scholar
Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, et al. Birth and expression evolution of mammalian microRNA genes. Genome Res. 2013;23(1):34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan J, Li H, Chen Z, Coghlan A, Coin LJ, Guo Y, et al. TreeFam: 2008 update. Nucleic Acids Res. 2008;36(Suppl 1):D735–40.
CAS
PubMed
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell. 2005;120:15–20.
Article
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar