Munroe TA. Systematic diversity of the Pleuronectiformes. In: Gibson RN, Nash RD, Geffen AJ, Van der Veer HW, editors. Flatfishes: biology and exploitation. Oxford: Blackwell Publishing; 2015. p. 13–51.
Google Scholar
Shi W, Kong X-Y, Wang Z-M, Jiang J-X. Utility of tRNA genes from the complete mitochondrial genome of Psetta maxima for implying a possible sister-group relationship to the Pleuronectiformes. Zool Stud. 2011;50:665–81.
CAS
Google Scholar
Betancur-R R, Ortí G. Molecular evidence for the monophyly of flatfishes (Carangimorpharia: Pleuronectiformes). Mol Phylogenet Evol. 2014;73:18–22.
Article
Google Scholar
Harrington RC, Faircloth BC, Eytan RI, et al. Phylogenomic analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the evolutionary eye. BMC Evol Biol. 2016;16:224.
Article
Google Scholar
Campbell MA, Chen WJ, López JA. Are flatfishes (Pleuronectiformes) monophyletic? Mol Phylogenet Evol. 2013;69:664–73.
Article
Google Scholar
Campbell MA, Chen WJ, López JA. Molecular data do not provide unambiguous support for the monophyly of flatfishes (Pleuronectiformes): a reply to Betancur-R and Ortí. Mol Phylogenet Evol. 2014;75:149–53.
Article
Google Scholar
Campbell MA, López JA, Satoh TP, et al. Mitochondrial genomic investigation of flatfish monophyly. Gene. 2014;551:176–82.
Article
CAS
Google Scholar
Robledo D, Hermida M, Rubiolo JA, et al. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. Comp Biochem Physiol - Part D Genomics Proteomics. 2017;21:41–55.
Article
CAS
Google Scholar
Azevedo MFC, Oliveira C, Pardo BG, et al. Cytogenetic characterization of six species of flatfishes with comments to karyotype differentiation patterns in Pleuronectiformes (Teleostei). J Fish Biol. 2007;70:1–15.
Article
CAS
Google Scholar
Vega L, Díaz E, Cross I, Rebordinos L. Caracterizaciones citogenética e isoenzimática del lenguado Solea senegalensis Kaup, 1858. Boletín Inst Español Oceanogr. 2002;18:1–6.
Google Scholar
Merlo MA, Iziga R, Portela-Bens S, et al. Analysis of the histone cluster in Senegalese sole (Solea senegalensis): evidence for a divergent evolution of two canonical histone clusters. Genome. 2017;60:441–53.
Article
CAS
Google Scholar
Pardo BG, Bouza C, Castro J, Martínez P, Sánchez L. Localization of ribosomal genes in Pleuronectiformes using ag-, CMA3-banding and in situ hybridization. Heredity. 2001;86:531–6.
Article
CAS
Google Scholar
Bitencourt JA, Sampaio I, Ramos RT, Vicari MR, Affonso PR. First report of sex chromosomes in Achiridae (Teleostei: Pleuronectiformes) with inferences about the origin of the multiple X1 X1 X2 X2 /X1 X2 Y system and dispersal of ribosomal genes in Achirus achirus. Zebrafish. 2017;14:90-5.
Taboada X, Pansonato-Alves JC, Foresti F, et al. Consolidation of the genetic and cytogenetic maps of turbot (Scophthalmus maximus) using FISH with BAC clones. Chromosoma. 2014;123:281–91.
Article
Google Scholar
Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet. 2014;46:253–60.
Article
CAS
Google Scholar
Manchado M, Zuasti E, Cross I, et al. Molecular characterization and chromosomal mapping of the 5S rRNA gene in Solea senegalensis: a new linkage to the U1, U2, and U5 small nuclear RNA genes. Genome. 2006;49:79–86.
Article
CAS
Google Scholar
Cross I, Merlo A, Manchado M, et al. Cytogenetic characterization of the sole Solea senegalensis (Teleostei: Pleuronectiformes: Soleidae): ag-NOR, (GATA)n, (TTAGGG)n and ribosomal genes by one-color and two-color FISH. Genetica. 2006;128:253–9.
Article
Google Scholar
Ponce M, Salas-Leiton E, Garcia-Cegarra A, et al. Genomic characterization, phylogeny and gene regulation of g-type lysozyme in sole (Solea senegalensis). Fish Shellfish Immunol. 2011;31:925–37.
Article
CAS
Google Scholar
García-Cegarra A, Merlo MA, Ponce M, et al. A preliminary genetic map in Solea senegalensis (Pleuronectiformes, Soleidae) using bac-fish and next-generation sequencing. Cytogenet Genome Res. 2013;141:227–40.
Article
Google Scholar
Portela-Bens S, Merlo MA, Rodríguez ME, et al. Integrated gene mapping and synteny studies give insights into the evolution of a sex proto-chromosome in Solea senegalensis. Chromosoma. 2017;126:261–77.
Article
CAS
Google Scholar
Manchado M, Catanese G, Ponce M, et al. The complete mitochondrial genome of the Senegalese sole, Solea senegalensis Kaup. Comparative analysis of tandem repeats in the control region among soles. DNA Seq. 2007;18:169–75.
Article
CAS
Google Scholar
Molina-Luzón MJ, Hermida M, Navajas-Pérez R, et al. First haploid genetic map based on microsatellite markers in Senegalese sole (Solea senegalensis, Kaup 1858). Mar Biotechnol. 2015;17:8–22.
Article
Google Scholar
Benzekri H, Armesto P, Cousin X, et al. De novo assembly, characterization and functional annotation of Senegalese sole (Solea senegalensis) and common sole (Solea solea) transcriptomes: integration in a database and design of a microarray. BMC Genomics. 2014;15:952.
Article
Google Scholar
Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–20.
Article
Google Scholar
Lewis SE, Searle SMJ, Harris N, et al. Apollo: a sequence annotation editor. Genome Biol. 2002;3 RESEARCH0082.1-0082.14.
Article
Google Scholar
Kearse M, Moir R, Wilson A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
Google Scholar
Tempel S. Using and understanding repeatMasker. Methods Mol Biol. 2012;859:29–51.
Article
CAS
Google Scholar
Yang F, Trifonov V, Ng BL, et al. Generation of paint probes from flow-sorted and microdissected chromosomes. In: Liehr T, editor. Fluorescence in situ hybridization—application guide. New York: Springer; 2009. p. 63–79.
Google Scholar
Zhou LQ, Yang AG, Liu XZ, Du W, Zhuang ZM. The karyotype analysis of Cynoglossus semilaevis in China. J Fish China. 2005;29:417–9.
Google Scholar
Bitencourt JA, Sampaio I, Ramos RTC, Affonso PRAM. Chromosomal fusion in Brazilian populations of Trinectes inscriptus Gosse, 1851 (Pleuronectiformes; Achiridae) as revealed by internal telomere sequences (ITS). J Exp Mar Bio Ecol. 2014;452:101–4.
Article
CAS
Google Scholar
Fan Z, Fox DP. Robertsonian polymorphism in plaice, Pleuronectes platessa L., and cod, Gadus morhua L., (Pisces Pleuronectiformes and Gadiformes). J Fish Biol. 1991;38:635–40.
Article
Google Scholar
Plohl M, Meštrović N, Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014;123:313–25.
Article
CAS
Google Scholar
Franck JPC, Wright JM. Conservation of a satellite DNA sequence (SATB) in the tilapiine and haplochromine genome (Pisces: Cichlidae). Genome. 1993;36:187–94.
Article
CAS
Google Scholar
Ferreira IA, Martins C. Physical chromosome mapping of repetitive DNA sequences in Nile tilapia Oreochromis niloticus: evidences for a differential distribution of repetitive elements in the sex chromosomes. Micron. 2008;39:411–8.
Article
CAS
Google Scholar
Robles F, De La Herrán R, Navajas-Pérez R, et al. Centromeric satellite DNA in flatfish (order Pleuronectiformes) and its relation to speciation processes. J Hered. 2017;108:217–22.
Google Scholar
Glasauer SMK, Neuhauss SCF. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Gen Genomics. 2014;289:1045–60.
Article
CAS
Google Scholar
Heenan P, Zondag L, Wilson MJ. Evolution of the sox gene family within the chordate phylum. Gene. 2016;575:385–92.
Article
CAS
Google Scholar
LeGrande WH. Karyology of six species of Louisiana flatfishes (Pleuronectiformes: Osteichtyes). Copeia. 1975;3:516–22.
Article
Google Scholar
Patro R, Prasad R. Chromosomal studies in five Indian flatfishes. Copeia. 1981;1981:498–503.
Article
Google Scholar
Vitturi R, Catalano E, Schillaci A. Karyotypic characterization of 16 Microchirus ocellstus (L.) specimens (Pisces, Soleidae) using conventional and silver staining (NORs). Caryologia. 1993;46:41–5.
Article
Google Scholar
Qumsiyeh MB. Evolution of number and morphology of mammalian chromosomes. J Hered. 1994;85:455–65.
Article
CAS
Google Scholar
Suárez P, Barroso ICGP, Silva D, Dos S, et al. Highest diploid number among Gymnotiformes: first cytogenetic insights into Rhabdolichops (Sternopygidae). Zebrafish. 2017;14:272–9.
Article
Google Scholar
Mandrioli M, Colomba MS, Vitturi R. Chromosomal analysis of repeated DNAs in the rainbow wrasse Coris julis (Pisces, Labridae). Genetica. 2000;108:191–5.
Article
CAS
Google Scholar
Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136-40.
Article
CAS
Google Scholar
Da Silva WO, Pieczarka JC, Ferguson-Smith MA, et al. Chromosomal diversity and molecular divergence among three undescribed species of Neacomys (Rodentia, Sigmodontinae) separated by Amazonian rivers. PLoS One. 2017;12:e0182218.
Article
Google Scholar
Steiner CC, Charter SJ, HouCk M, Ryder O. Molecular phylogeny and chromosomal evolution of Alcelaphini (Antilopinae). J Hered. 2014;105:324–33.
Article
Google Scholar
Henning F, Moysés CB, Calcagnotto D, et al. Independent fusions and recent origins of sex chromosomes in the evolution and diversification of glass knife fishes (Eigenmannia). Heredity. 2011;106:391–400.
Article
CAS
Google Scholar
Utsunomia R, Scacchetti PC, Pansonato-Alves JC, Oliveira C, Foresti F. Comparative chromosome mapping of U2 snRNA and 5S rRNA genes in Gymnotus species (Gymnotiformes, Gymnotidae): evolutionary dynamics and sex chromosome linkage in G. pantanal. Cytogenet Genome Res. 2014;142:286–92.
Article
Google Scholar
Mustapha UF, Jiang D, Liang Z, Gu H, Yang W, Chen H, et al. Male-specific Dmrt1 is a candidate sex determination gene in spotted scat (Scatophagus argus). Aquaculture. 2018;495:351–8.
Article
CAS
Google Scholar
Cui Z, Liu Y, Wang W, Wang Q, Zhang N, Lin F, et al. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci Rep. 2017;7:42213.
Article
CAS
Google Scholar
Nirchio M, Oliveira C, Ferreira IA, et al. Comparative cytogenetic and allozyme analysis of Mugil rubrioculus and M. curema (Teleostei: Mugilidae) from Venezuela. Interciencia. 2007;32:757–62.
Google Scholar
Frohlich J, Kubickova S, Musilova P, et al. Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes. PLoS One. 2017;12:e0187559.
Article
Google Scholar
Cioffi MDB, Yano CF, Sember A, Bertollo LAC. Chromosomal evolution in lower vertebrates: Sex chromosomes in neotropical fishes. Genes (Basel). 2017;8:258.
Article
Google Scholar
Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity (Edinb). 2005;95:118–28.
Article
CAS
Google Scholar
Klinkhardt M, Tesche M, Greven H. Database of fish chromosomes. Magdeburg: Westarp Wissenschaften; 1995.
Google Scholar
Sofradzija A. Cytogenetic investigations on Adriatic fishes Uranoscopus scaber L., Solea lutea (Risso) and Serranus scriba (L.). Bilje Notes. 1985;64:1–8.
Google Scholar
Fukuoka H, Niiyama H. Notes on the somatic chromosomes of ten species of pleuronectid fishes. CIS. 1970;11:18–9.
Google Scholar