Mo Z, Li S, Kong F, Tang X, Mao Y. Characterization of a novel fungal disease that infects the gametophyte of Pyropia yezoensis (Bangiales, Rhodophyta). J Appl Phycol. 2016;28:395–404.
Article
Google Scholar
Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MD, Hwang MS, Choi HG, Miyata M, Kikuchi N, Oliveira MC. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol. 2011;47:1131–51.
Article
Google Scholar
Kumar M, Kumari P, Trivedi N, Shukla MK, Gupta V, Reddy C, Jha B. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J Appl Phycol. 2011;23:797–810.
Article
CAS
Google Scholar
Rupérez P. Mineral content of edible marine seaweeds. Food Chem. 2002;79:23–6.
Article
Google Scholar
Gachon CM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH. Algal diseases: spotlight on a black box. Trends Plant Sci. 2010;15:633–40.
Article
CAS
Google Scholar
Arasaki S. Studies on the rot of Porohyra tenera by Pythium. Nippon Suisan Gakk. 1947;13:74–90.
Article
Google Scholar
Takahashi M. Pythium porphyrae Takahashi et Sasaki, sp. nov. causing red rot of marine red algae Porphyra spp. Trans Mycol Soc Jpn. 1977;18:279–85.
Google Scholar
Uppalapati SR, Fujita Y. Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J Phycol. 2000;36:359–66.
Article
CAS
Google Scholar
Uppalapati SR, Fujita Y. Red rot resistance in interspecific protoplast fusion product progeny of Porphyra yezoensis and P. tenuipedalis (Bangiales, Rhodophyta). Phycol Res. 2000;48:281–9.
Article
Google Scholar
Uppalapati S, Kerwin J, Fujita Y. Epifluorescence and scanning electron microscopy of host-pathogen interactions between Pythium porphyrae (Peronosporales, Oomycota) and Porphyra yezoensis (Bangiales, Rhodophyta). Bot Mar. 2001;44:139–45.
Google Scholar
Park CS, Kakinuma M, Amano H. Detection and quantitative analysis of zoospores of Pythium porphyrae, causative organism of red rot disease in Porphyra, by competitive PCR. J Appl Phycol. 2001;13:433–41.
Article
CAS
Google Scholar
Park CS, Kakinuma M, Amano H. Detection of the red rot disease fungi Pythium spp. by polymerase chain reaction. Fisheries Sci. 2001;67:197–9.
Article
CAS
Google Scholar
Park CS, Kakinuma M, Amano H. Forecasting infections of the red rot disease on Porphyra yezoensis Ueda (Rhodophyta) cultivation farms. J Appl Phycol. 2006;18:295–9.
Article
Google Scholar
Addepalli M, Fujita Y, Kanai K. A monoclonal antibody and the lectin wheat germ agglutinin induce zoospore encystment in Pythium porphyrae, a marine microbial pathogen. Mycologia. 2002;94:712–22.
Article
CAS
Google Scholar
Hwang EK, Park CS, Kakinuma M. Physicochemical responses of Pythium porphyrae (Oomycota), the causative organism of red rot disease in Porphyra to acidification. Aquac Res. 2009;40:1777–84.
Article
CAS
Google Scholar
Abe S, Kurashima A, Yokohama Y, Tanaka J. The cellular ability of desiccation tolerance in Japanese intertidal seaweeds. Bot Mar. 2001;44:125–31.
Article
Google Scholar
Burritt DJ, Larkindale J, Hurd CL. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta. 2002;215:829–38.
Article
CAS
Google Scholar
Davison IR, Pearson GA. Stress tolerance in intertidal seaweeds. J Phycol. 1996;32:197–211.
Article
Google Scholar
Pinto E, Sigaud-kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P. Heavy metal–induced oxidative stress in algae. J Phycol. 2003;39:1008–18.
Article
CAS
Google Scholar
van Tamelen PG. Algal zonation in tidepools: experimental evaluation of the roles of physical disturbance, herbivory and competition. J Exp Mar Biol Ecol. 1996;201:197–231.
Article
Google Scholar
Andrade S, Contreras L, Moffett JW, Correa JA. Kinetics of copper accumulation in Lessonia nigrescens (Phaeophyceae) under conditions of environmental oxidative stress. Aquat Toxcicol. 2006;78:398–401.
Article
CAS
Google Scholar
Contreras L, Moenne A, Correa JA. Antioxidant responses in Scytosiphon lomentaria (phaeophyceae) inhabiting copper-enriched coastal environments. J Phycol. 2005;41:1184–95.
Article
CAS
Google Scholar
Contreras L, Dennett G, Moenne A, Palma RE, Correa JA. Molecular and morphologically distinct Scytosiphon species (Scytosiphonales, Phaeophyceae) display similar antioxidant capacities. J Phycol. 2007;43:1320–8.
Article
CAS
Google Scholar
Contreras L, Mella D, Moenne A, Correa JA. Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquat Toxicol. 2009;94:94–102.
Article
CAS
Google Scholar
Contreras-Porcia L, Dennett G, González A, Vergara E, Medina C, Correa JA, Moenne A. Identification of copper-induced genes in the marine alga Ulva compressa (Chlorophyta). Mar Biotechnol. 2011;13:544–56.
Article
CAS
Google Scholar
Kumar M, Kumari P, Gupta V, Reddy C, Jha B. Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. J Exp Mar Biol Ecol. 2010;391:27–34.
Article
CAS
Google Scholar
Lee MY, Shin HW. Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J Appl Phycol. 2003;15:13–9.
Article
CAS
Google Scholar
Liu W, Au DW, Anderson DM, Lam PK, Wu RS. Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol. 2007;346:76–86.
Article
CAS
Google Scholar
Rijstenbil JW. Effects of periodic, low UVA radiation on cell characteristics and oxidative stress in the marine planktonic diatom Ditylum brightwellii. Eur J Phycol. 2001;36:1–8.
Article
Google Scholar
Lantz RC, Lynch BJ, Boitano SA, Burgess JL. Pulmonary biomarkers based on alterations in protein expression following exposure to arsenic. FASEB J. 2006;20:A672.
Google Scholar
Zhu Z, Edwards RJ. Application of proteomics to study mechanisms of toxicity and dose-response relationships of chemical exposure. Gen Appl Syst Toxicol; 2009.
Pattanakitsakul S-n, Rungrojcharoenkit K, Kanlaya R, Sinchaikul S, Noisakran S, Chen S-T, Malasit P, Thongboonkerd V. Proteomic analysis of host responses in HepG2 cells during dengue virus infection. J Proteome Res. 2007;6:4592–600.
Article
CAS
Google Scholar
Lu Z, Qin A, Qian K, Chen X, Jin W, Zhu Y, Eltahir Y. Proteomic analysis of the host response in the bursa of Fabricius of chickens infected with Marek's disease virus. Virus Res. 2010;153:250–7.
Article
CAS
Google Scholar
Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4:3665–85.
Article
Google Scholar
Swaney DL, McAlister GC, Coon J. Decision tree–driven tandem mass spectrometry for shotgun proteomics. Nat Methods. 2008;5:959.
Article
CAS
Google Scholar
Kav NN, Srivastava S, Yajima W, Sharma N. Application of proteomics to investigate plant-microbe interactions. Curr Proteomics. 2007;4:28–43.
Article
CAS
Google Scholar
Bhadauria V, Banniza S, Wang L-X, Wei Y-D, Peng Y-L. Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts. Eur J Plant Pathol. 2010;126:81–95.
Article
Google Scholar
Roy N, Nageshan RK, Pallavi R, Chakravarthy H, Chandran S, Kumar R, Gupta AK, Singh RK, Yadav SC, Tatu U. Proteomics of Trypanosoma evansi infection in rodents. PLoS One. 2010;5(3):e9796.
Article
Google Scholar
Schmidt F, Völker U. Proteome analysis of host–pathogen interactions: investigation of pathogen responses to the host cell environment. Proteomics. 2011;11:3203–11.
Article
CAS
Google Scholar
TAN KC, Ipcho SV, Trengove RD, Oliver RP, Solomon PS. Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol. 2009;10:703–15.
Article
CAS
Google Scholar
Tan F, Jin Y, Liu W, Quan X, Chen J, Liang Z. Global liver proteome analysis using iTRAQ labeling quantitative proteomic technology to reveal biomarkers in mice exposed to perfluorooctane sulfonate (PFOS). Environ Sci Technol. 2012;46:12170–7.
Article
CAS
Google Scholar
Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W. Quantitative iTRAQ LC–MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res. 2012;11:5286–300.
Article
CAS
Google Scholar
Issaq HJ, Veenstra TD. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. BioTechniques. 2008;44:697.
Article
CAS
Google Scholar
Kim Y, Nandakumar M, Marten MR. Proteomics of filamentous fungi. Trends Biotechnol. 2007;25:395–400.
Article
CAS
Google Scholar
de Oliveira JMPF, de Graaff LH. Proteomics of industrial fungi: trends and insights for biotechnology. Appl Microbiol Biotechnol. 2011;89:225–37.
Article
CAS
Google Scholar
Redding AM, Mukhopadhyay A, Joyner DC, Hazen TC, Keasling JD. Study of nitrate stress in Desulfovibrio vulgaris Hildenborough using iTRAQ proteomics. Brief Funct Genomics. 2006;5:133–43.
Article
CAS
Google Scholar
Sun P, Mao Y, Li G, Cao M, Kong F, Wang L, Bi G. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) MS Hwang & HG Choi in response to temperature stresses. BMC Genomics. 2015;16:463.
Article
Google Scholar
Zhao Y-L, Zhou Y-H, Chen J-Q, Huang Q-Y, Han Q, Liu B, Cheng G-D, Li Y-H. Quantitative proteomic analysis of sub-MIC erythromycin inhibiting biofilm formation of S. suis in vitro. J Proteomics. 2015;116:1–14.
Article
CAS
Google Scholar
Xu C-G, Yang Y-B, Zhou Y-H, Hao M-Q, Ren Y-Z, Wang X-T, Chen J-Q, Muhammad I, Wang S, Liu D. Comparative proteomic analysis provides insight into the key proteins as possible targets involved in aspirin inhibiting biofilm formation of Staphylococcus xylosus. Front Pharmacol. 2017;8:543.
Article
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–30.
Article
CAS
Google Scholar
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12:9.
Article
CAS
Google Scholar
Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 1997;16:4806–16.
Article
CAS
Google Scholar
Shi J, Chen Y, Xu Y, Ji D, Chen C, Xie C. Differential proteomic analysis by iTRAQ reveals the mechanism of Pyropia haitanensis responding to high temperature stress. Sci Rep. 2017;7:44734.
Article
CAS
Google Scholar
Meszaros K, Lang C, Bagby G, Spitzer J. Contribution of different organs to increased glucose consumption after endotoxin administration. J Biol Chem. 1987;262:10965–70.
CAS
PubMed
Google Scholar
Lang CH, Dobrescu C. Gram-negative infection increases noninsulin-mediated glucose disposal. Endocrinology. 1991;128:645–53.
Article
CAS
Google Scholar
Zadražnik T, Hollung K, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J. Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteome. 2013;78:254–72.
Article
Google Scholar
Xu K, Xu Y, Ji D, Xie J, Chen C, Xie C. Proteomic analysis of the economic seaweed Pyropia haitanensis in response to desiccation. Algal Res. 2016;19:198–206.
Article
Google Scholar
Ritter A, Ubertini M, Romac S, Gaillard F, Delage L, Mann A, Cock JM, Tonon T, Correa JA, Potin P. Copper stress proteomics highlights local adaptation of two strains of the model brown alga Ectocarpus siliculosus. Proteomics. 2010;10:2074–88.
Article
CAS
Google Scholar
Cosse A, Potin P, Leblanc C. Patterns of gene expression induced by oligoguluronates reveal conserved and environment-specific molecular defense responses in the brown alga Laminaria digitata. New Phytol. 2009;182:239–50.
Article
CAS
Google Scholar
Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev. 2009;61:310–8.
Article
CAS
Google Scholar
Kinnunen S, Oksala N, Hyyppä S, Sen CK, Radak Z, Laaksonen DE, Szabó B, Jakus J, Atalay M. α-Lipoic acid modulates thiol antioxidant defences and attenuates exercise-induced oxidative stress in standardbred trotters. Free Radic Res. 2009;43:697–705.
Article
CAS
Google Scholar
van Oosten-Hawle P, Porter RS, Morimoto RI. Regulation of organismal proteostasis by transcellular chaperone signaling. Cell. 2013;153:1366–78.
Article
CAS
Google Scholar
Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta, Proteins Proteomics. 2005;1703:203–12.
Article
CAS
Google Scholar
Locato V, Gadaleta C, De Gara L, De Pinto MC. Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ. 2008;31:1606–19.
Article
CAS
Google Scholar
Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Expl Bot. 2010;61:4197–220.
Article
CAS
Google Scholar
Doherty GJ, McMahon HT. Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu Rev Biophys. 2008;37:65–95.
Article
CAS
Google Scholar
Xiong L, Ishitani M, Lee H, Zhu J-K. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress–and osmotic stress–responsive gene expression. Plant Cell. 2001;13:2063–83.
Article
CAS
Google Scholar
Stevenson JM, Perera IY, Heilmann I, Persson S, Boss WF. Inositol signaling and plant growth. Trends Plant Sci. 2000;5:252–8.
Article
CAS
Google Scholar
Munnik T, Vermeer JE. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ. 2010;33:655–69.
Article
CAS
Google Scholar
Lin A-P, Wang G-C, Yang F, Pan G-H. Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration. Planta. 2009;229:803–10.
Article
CAS
Google Scholar
Glazer AN. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989;264:1–4.
CAS
PubMed
Google Scholar
Samsonoff WA, MacColl R. Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Arch Microbiol. 2001;176:400–5.
Article
CAS
Google Scholar
Strittmatter M, Grenville-Briggs LJ, Breithut L, Van West P, Gachon CM, Küpper FC. Infection of the brown alga Ectocarpus siliculosus by the oomycete Eurychasma dicksonii induces oxidative stress and halogen metabolism. Plant Cell Environ. 2016;39:259–71.
Article
CAS
Google Scholar
Uppalapati S, Fujita Y. The relative resistances of Porphyra species (Bangiales, Rhodophyta) to infection by Pythium porphyrae (Peronosporales, Oomycota). Bot. Mar. 2001;44:1–7.
Article
Google Scholar
Jorrín Novo JV. Plant Proteomics: methods and protocols. By Hervé Thiellement, Michel Zivy, Catherine Damerval and Valérie Mechin (Eds.). Biotechnol J. 2007;2(5):642.
Article
Google Scholar
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359.
Article
Google Scholar
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35.
Article
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.
Article
Google Scholar
Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2015;44:D447–56.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar