Meadows JRS, Lindblad-Toh K. Dissecting evolution and disease using comparative vertebrate genomics. Nat Rev Genet. 2017;18:624–36.
Article
CAS
Google Scholar
Andersson L. Domestic animals as models for biomedical research. Ups J Med Sci. 2016;121:1–11.
Article
Google Scholar
Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, et al. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 2013;9:e1003211.
Article
CAS
Google Scholar
Andersson L. How selective sweeps in domestic animals provide new insight into biological mechanisms. J Intern Med. 2012;271:1–14.
Article
CAS
Google Scholar
Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D, Rubin CJ, et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature. 2012;30:642–6.
Article
Google Scholar
Petersen JL, Mickelson JR, Cothran EG, Andersson LS, Axelsson J, Bailey E, et al. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS One. 2013;8:e54997.
Article
CAS
Google Scholar
Svensk Travsport:Uppfödning. https://www.travsport.se/artikel/uppfodning (2018). Accessed 31 Aug 2018.
Det Norske Travselskap: Næring og Avl. https://www.travsport.no (2018). Accessed 31 Aug 2018.
Föreningen Nordsvenska Hästen. http://www.nordsvensken.org/ (2018). Accessed 31 Aug 2018.
Jäderkvist Fegraeus K, Velie BD, Axelsson J, Ang R, Hamilton NA, Andersson L, et al. A potential regulatory region near the EDN3 gene may control both harness racing performance and coat color variation in horses. Physiol Rep. 2018;6:e13700.
Article
Google Scholar
Bohin O, Rönningen K. Inbreeding and relationship within the north-Swedish horse. Acta Agric Scand. 1975;25:121–5.
Article
Google Scholar
Árnason T. Trends and asymptotic limits for racing speed in Standardbred trotters. Livest Prod Sci. 2001;72:135–45.
Article
Google Scholar
Árnason T, Bendroth M, Philipsson J, Henriksson K, Darenius A. Genetic evaluations of Swedish trotters-state of breeding evaluation in trotters. Proceedings of the European Federation of Animal Science symposium of the commission on horse production. Wageningen, the Netherlands: Pudoc; 1989. p. 106–29.
Google Scholar
Pedigree Online All Breed Database. https://www.allbreedpedigree.com/ (2018). Accessed 31 Aug 2018.
Ricard A, Robert C, Blouin C, Baste F, Torquet G, Morgenthaler C, Riviére J, Mach N, Mata X, Schibler L, Barrey E. Endurance exercise ability in the horses: a trait with complex polygenic determinism. Front Genet. 2017;8:89.
Article
Google Scholar
Hermey G. The Vps10p-domain receptor family. Cell Mol Life Sci. 2009;66:2677–89.
Article
CAS
Google Scholar
Reitz C, Tosto G, Vardarajan B, Rogaeva E, Ghani M, Rogers RS, et al. Independent and epistatic effects of variants in VPS10-d receptors on Alzheimer disease risk and processing of the amyloid precursor protein (APP). Transl Psychiatry. 2013;3:e256.
Article
CAS
Google Scholar
Reitz C. The role of the retromer complex in aging-related neurodegeneration: a molecular and genomic review. Mol Gen Genomics. 2015;290:413–27.
Article
CAS
Google Scholar
Binzer S, Stenager E, Binzer M, Kyvik KO, Hillert J, Imrell K. Genetic analysis of the isolated Faroe Islands reveals SORCS3 as a potential multiple sclerosis risk gene. Mult Scler. 2016;22:733–40.
Article
CAS
Google Scholar
Breiderhoff T, Christiansen GB, Pallesen LT, Vaegter C, Nykjaer A, Holm MM, et al. Sortilin-related receptor SORCS3 is a postsynaptic modulator of synaptic depression and fear extinction. PLoS One. 2013;8:e75006.
Article
CAS
Google Scholar
Lionel AC, Crosbie J, Barbosa N, Goodale T, Thiruvahindrapuram B, Rickaby J, et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med. 2011;3:95ra75.
Article
CAS
Google Scholar
Hu Z, Park CA, Reecy JM. Developmental progress and current status of the animal QTLdb. Nucleic Acids Res. 2016;44:D827–33.
Article
CAS
Google Scholar
Frischknecht M, Jagannathan V, Plattet P, Neuditschko M, Signer-Hasler H, Bachmann I, et al. A non-synonymous HMGA2 variant decreases height in Shetland ponies and other small horses. PLoS One. 2015;10:e0140749.
Article
Google Scholar
Metzger J, Schrimpf R, Philipp U, Distl O. Expression levels of LCORL are associated with body size in horses. PLoS One. 2013;8:e56497.
Article
CAS
Google Scholar
Avila F, Mickelson JR, Schaefer RJ, McCue ME. Genome-wide signatures of selection reveal genes associated with performance in American quarter horse subpopulations. Front Genet. 2018;9:249.
Article
Google Scholar
Tang SL, Gao YL, Wen-Zhong H. Knowdown of TRIM37 suppresses the proliferation, migration and invasion of glioma cells through the inactivation of PI3K/Akt signaling pathway. Biomed Pharmacother. 2018;99:59–64.
Article
CAS
Google Scholar
Jobic F, Morin G, Vincent-Delorme C, Cadet E, Cabry R, Mathieu-Dramard M, et al. New intragenic rearrangements in non-Finnish mulibrey nanism. Am J Med Genet A. 2017;173:2782–8.
Article
CAS
Google Scholar
Mosher DS, Quigon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007;3:e79.
Article
Google Scholar
Hill EW, McGivney BA, Gu J, Whiston R, MacHugh DE. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for thoroughbred racehorses. BMC Genomics. 2010;11:552.
Article
Google Scholar
McGivney BA, Browne JA, Fonseca RG, Katz LM, MacHugh DE, Whiston R, Hill EW. MSTN genotypes in thoroughbred horses influence skeletal muscle gene expression and racetrack performance. Anim Genet. 2012;43:810–2.
Article
CAS
Google Scholar
Árnason T. Genetic evaluation of Swedish Standardbred trotters for racing performance traits and racing status. J Anim Breed Genet. 1999;116:387–98.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. Genome project data P: the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
Article
CAS
Google Scholar
Kofler R, Orozco-terWengel P, De Maio N, Pandey RV, Nolte V, Futschik A, et al. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One. 2011;6:e15925.
Article
CAS
Google Scholar
Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NHC, Zody MC, Anderson N, et al. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet. 2007;39:1321–8.
Article
CAS
Google Scholar
R Development Core Team: R-A Language and Environment for Statistical Computing. https://www.r-project.org/. (2018). Accessed 13 Jan 2018.
Thomas PD, Campbell MJ, Kejariwal A, Mi HY, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.
Article
CAS
Google Scholar
Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44:D336–42.
Article
CAS
Google Scholar
Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012;28:1919–20.
Article
CAS
Google Scholar