Hartwig EE. Growth and reproduction characteristics of soybean grown under short-day conditions. Crop Sci. 1970;12:47–53.
Google Scholar
Gai J, Wang Y, Zhang M, Wang J, Chang R. Studies on the classification of maturity groups of soybeans in China. Acta Agron Sin. 2001;27(3):286–92.
Google Scholar
Jia H, Jiang B, Wu C, Lu W, Hou W, Sun S, Yan H, Han T. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS One. 2014;9(4):e94139.
Article
Google Scholar
Jiang B, Nan H, Gao Y, Tang L, Yue Y, Lu S, Ma L, Cao D, Sun S, Wang J, Wu C, Yuan X, Hou W, Kong F, Han T, Liu B. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in the diversity of maturity and adaptation to different latitude. PLoS One. 2013;9(8):e106042.
Article
Google Scholar
Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot. 2013;113(3):429–41.
Article
Google Scholar
Zhai H, Lü S, Wang Y, Chen X, Ren H, Yang J, Cheng W, Zong C, Gu H, Qiu H, Wu H, Zhang X, Cui T, Xia Z. Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS One. 2014;9(5):e97636.
Article
Google Scholar
Bernard RL. Two major genes for time of flowering and maturity in soybeans. Crop Sci. 1971;11(2):242–4.
Article
Google Scholar
Buzzell RI. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol. 1971;13(4):703–7.
Article
Google Scholar
Buzzel RI, Voldeng HD. Research notes : inheritance of insensitivity to long daylength. Soybean Genetics Newsletter. 1980;7(1):26–9.
Google Scholar
McBlain B, Bernard RL. A new gene affecting the time of flowering and maturity in soybeans. J Hered. 1987;78(3):160–2.
Article
Google Scholar
Bonato ER, Vello NA. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol. 1999;22(2):229–32.
Article
Google Scholar
Cober ER, Voldeng HD. A new soybean maturity and photoperiod sensitivity locus linked to E1 and T. Crop Sci. 2001;41(3):698–701.
Article
Google Scholar
Cober ER, Molnar SJ, Charette M, Voldeng HD. A new locus for early maturity in soybean. Crop Sci. 2010;50(2):524–7.
Article
Google Scholar
Kong F, Nan H, Cao D, Li Y, Wu F, Wang J, Lu S, Yuan X, Cober ER, Abe J, Liu B. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci. 2014;54(6):2529–35.
Article
Google Scholar
Ray JD, Hinson K, Mankono EB, Malo FM. Genetic control of a long-juvenile trait in soybean. Crop Sci. 1995;35(4):1001–6.
Article
Google Scholar
Samanfar B, Molnar SJ, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober ER. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet. 2017;130(2):377–90.
Article
CAS
Google Scholar
Xia Z, Zhai H, Liu B, Kong F, Yuan X, Wu H, Cober ER, Harada K. Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Plant Syst Evol. 2012;298(7):1217–27.
Article
CAS
Google Scholar
Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci U S A. 2012;109(32):2155–64.
Article
Google Scholar
Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics. 2011;188(2):395–407.
Article
CAS
Google Scholar
Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics. 2009;182(4):1251–62.
Article
CAS
Google Scholar
Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics. 2008;180(2):995–1007.
Article
CAS
Google Scholar
Sun H, Jia Z, Cao D, Jiang B, Wu C, Hou W, Liu Y, Fei Z, Zhao D, Han T. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One. 2011;6(12):e29238.
Article
CAS
Google Scholar
Zhao C, Takeshima R, Zhu J, Xu M, Sato M, Watanabe S, Kanazawa A, Liu B, Kong F, Yamada T, Abe J. A recessive allele for delayed FLOWERING at the soybean maturity LOCUS E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol. 2016;16:20.
Article
Google Scholar
Yue Y, Liu N, Jiang B, Li M, Wang H, Jiang Z, Pan H, Xia Q, Ma Q, Han T, Nian H. A single nucleotide deletion in J encoding GmELF3 confers long juvenility and is associated with adaption of tropic soybean. Mol Plant. 2017;10(4):656–8.
Article
CAS
Google Scholar
Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober ER, Weller JL, Liu B, Hou X, Tian Z, Kong F. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet. 2017;49(11):1559–661.
Article
Google Scholar
Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol. 2010;154(3):1220–31.
Article
CAS
Google Scholar
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007;316(5827):1030–3.
Article
CAS
Google Scholar
Amasino R. Seasonal and developmental timing of flowering. Plant J. 2010;61(6):1001–13.
Article
CAS
Google Scholar
Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 2004;135(2):677–84.
Article
CAS
Google Scholar
Nan H, Cao D, Zhang D, Li Y, Lu S, Tang L, Yuan X, Liu B, Kong F. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS One. 2014;9(5):e97669.
Article
Google Scholar
Liu W, Jiang B, Ma L, Zhang S, Zhai H, Xu X, Hou W, Xia Z, Wu C, Sun S, Wu T, Chen L, Han T. Functional diversification of FLOWERING LOCUS T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytol. 2018;217(3):1335–45.
Article
CAS
Google Scholar
Thakare D, Kumudini S, Dinkins RD. The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis. Planta. 2011;234(5):933–43.
Article
CAS
Google Scholar
Wang Z, Zhou Z, Liu Y, Liu T, Li Q, Ji Y, Li C, Fang C, Wang M, Wu M, Shen Y, Tang T, Ma J, Tian Z. Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis. Plant Cell. 2015;27(2):323–36.
Article
CAS
Google Scholar
Jiang B, Yue Y, Gao Y, Ma L, Sun S, Wu C, Hou W, Lam HM, Han T. GmFT2a polymorphism and maturity diversity in soybeans. PLoS One. 2013;8(10):e77474.
Article
CAS
Google Scholar
Zhai H, Lü S, Liang S, Wu H, Zhang X, Liu B, Kong F, Yuan X, Li J, Xia Z. GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS One. 2014;9(2):e89030.
Article
Google Scholar
Wu F, Sedivy EJ, Price WB, Haider W, Hanzawa Y. Evolutionary trajectories of duplicated FT homologues and their roles in soybean domestication. Plant J. 2017;90(5):941–53.
Article
CAS
Google Scholar
Wigge PA. FT, a mobile developmental signal in plants. Curr Biol. 2011;21(9):374–8.
Article
Google Scholar
Schwartz C, Balasubramanian S, Warthmann N, Michael TP, Lempe J, Sureshkumar S, Kobayashi Y, Maloof JN, Borevitz JO, Chory J, Weigel D. Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana. Genetics. 2009;183(2):723–32.
Article
CAS
Google Scholar
Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K. Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci U S A. 2009;106(11):4555–60.
Article
CAS
Google Scholar
Fehr WR, Caviness CE. Stages of Soybean Development. Special Report 80 1977, Cooperative extension service, agriculture and home economic Experiment Station. Ames: Iowa State University. p. 1–11.
Chen Q, Liu C, Lü D, He J. The basic principle of DNA extraction from soybean. J Northeast Agric Univ. 2004;35(2):254–6.
Google Scholar
Swindell SR, Plasterer TN. SEQMAN. Contig assembly. In: Swindell SR, editor. Sequence Data Analysis Guidebook. Methods In Molecular Medicine, vol. 70; 1997. p. 75–89.
Chapter
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
Google Scholar
Hall T. BioEdit, version 7.0.9. Carlsbad: Computer program and documentation, lbis Biosciences; 2007. http://www.mbio.ncsu.edu/BioEdit/ bioedit.html
Google Scholar
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2.
Article
CAS
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
CAS
Google Scholar
Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA. Haplotype tagging for the identification of common disease genes. Nat Genet. 2001;29:233–7.
Article
CAS
Google Scholar
Lam H-M, Xu X, Liu X, Chen W, Yang G, Wong F-L, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet. 2010;42(12):1053–9.
Article
CAS
Google Scholar
Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB. Single-nucleotide polymorphisms in soybean. Genetics. 2003;163(3):1123–34.
CAS
PubMed
PubMed Central
Google Scholar
Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol. 2002;5(2):94–100.
Article
CAS
Google Scholar