Perrier F, Yan B, Candaudap F, Pokrovsky OS, Gourdain E, Meleard B, et al. Variability in grain cadmium concentration among durum wheat cultivars: impact of aboveground biomass partitioning. Plant Soil. 2016;404(1–2):307–20.
Article
CAS
Google Scholar
DalCorso G, Farinati S, Furini A. Regulatory networks of cadmium stress in plants. Plant Signal Behav. 2010;5(6):663–7.
Article
CAS
Google Scholar
Yang Y, Xiong J, Chen R, Fu G, Chen T, Tao L. Excessive nitrate enhances cadmium (cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environ Exp Bot. 2016;122(2016):141–9.
Article
CAS
Google Scholar
Wang Y, Wang C, Liu Y, Yu K, Zhou Y. GmHMA3 sequesters cd to the root endoplasmic reticulum to limit translocation to the stems in soybean. Plant Sci. 2018;270(2018):23–9.
CAS
Google Scholar
Farinati S, DalCorso G, Varotto S, Furini A. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol. 2010;185(4):964–78.
Article
CAS
Google Scholar
Kulik A, Anielska-Mazur A, Bucholc M, Koen E, Szymańska K, Żmieńko A, et al. SNF1-related protein kinases type2 are involved in plant responses to cadmium stress. Plant Physiol. 2012;160(2):868–83.
Article
CAS
Google Scholar
Cheng Y, Wang C, Chai S, Shuai W, Sha L, Zhang H, et al. Ammonium N influences the uptakes, translocations, subcellular distributions and chemical forms of cd and Zn to mediate the cd/Zn interactions in dwarf polish wheat (Triticum polonicum L.) seedlings. Chemosphere. 2018;193(2018):1164–71.
Article
CAS
Google Scholar
Yeh CM, Chien PS, Huang HJ. Distinct signaling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot. 2007;58(3):659–71.
Article
CAS
Google Scholar
Liu X, Kim KE, Kim K, Nguyen XC, Han HJ, Jung MS, et al. Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry. 2010;71(5–6):614–8.
Article
CAS
Google Scholar
Fujii H, Verslues PE, Zhu JK. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell. 2007;19(2):485–94.
Article
CAS
Google Scholar
Zheng Z, Xu X, Crosley RA, Greenwalt SA. SunY, Blakeslee B, et al. the protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol. 2010;153(1):99–113.
Article
CAS
Google Scholar
Fan SK, Fang XZ, Guan MY, Ye YQ, Lin XY, Du ST, et al. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Front Plant Sci. 2014;5:721.
Article
Google Scholar
Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and plant growth. Plant Cell. 2002;14(6):1223–33.
Article
CAS
Google Scholar
Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. P Natl Acad Sci USA. 2000;97(9):4991–6.
Article
CAS
Google Scholar
Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C. The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J. 2009;422(2):217–28.
Article
CAS
Google Scholar
Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, et al. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot. 2015;66(13):3815–29.
Article
CAS
Google Scholar
Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem. 2006;281(8):5310–8.
Article
CAS
Google Scholar
Zhang H, Mao X, Wang C, Jing R. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PloS One. 2010;5(12):e16041.
Song XQ, Liu LF, Jiang YJ, Zhang BC, Gao YP, Liu XL, et al. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plant. Mol Plant. 2013;6(3):768–80.
Article
CAS
Google Scholar
Johnson RR, Wagner RL, Verhey SD, Walke-Simmons MK. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol. 2002;130(2):837–46.
Article
Google Scholar
Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, et al. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J. 2005;44(6):939–49.
Article
CAS
Google Scholar
Zhang H, Li W, Mao X, Jing R, Jia H. Differential activation of the wheat SnRK2 family by abiotic stresses. Front Plant Sci. 2016;7:420.
PubMed Central
Google Scholar
Wang Y, Wang X, Gu M, Kang H, Zeng J, Fan X, et al. Cloning and characterization of four novel SnRK2 genes from Triticum polonicum. Biol Plantarum. 2015;59(2):211–9.
Article
CAS
Google Scholar
Jiang Y, Wang Y, Huang Z, Kang H, Sha L, Fan X, et al. Cloning and characterization of four TpSnRK2s from dwarf polish wheat. Biol Plantarum. 2017;61(4):601–10.
Article
CAS
Google Scholar
Wang X, Wang C, Sheng H, Wang Y, Zeng J, Kang H, et al. Transcriptome-wide identification and expression analysis of ABC transporters in dwarf polish wheat under metal stresses. Biol Plantarum. 2017;61(2):293–304.
Article
CAS
Google Scholar
The International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788.
Article
Google Scholar
Peng F, Wang C, Zhu J, Zeng J, Kang H, Fan X, et al. Expression of TpNRAMP5, a metal transporter from polish wheat (Triticum polonicum L.), enhances the accumulation of cd, co and Mn in transgenic Arabidopsis plants. Planta. 2018;247(6):1395–406.
Article
CAS
Google Scholar
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2(7):1565–72.
Article
CAS
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43.
Article
CAS
Google Scholar
Ihnatowicz A, Siwinska J, Meharg AA, Carey M, Koornneef M, Reymond M. Conserved histidine of metal transporter AtNRAMP1 is crucial for optimal plant growth under manganese deficiency at chilling. New Phytol. 2014;202(4):1173–83.
Article
CAS
Google Scholar
Boonyaves K, Gruissem W, Bhullar NK. NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Mol Biol. 2016;90(3):207–15.
Article
CAS
Google Scholar
Chen ZR, Kuang L, Gao YQ, Wang YL, Salt DE, Chao DY. AtHMA4 drives natural variation in leaf Zn concentration of Arabidopsis thaliana. Front Plant Sci. 2018;9:270.
Article
Google Scholar
Giniger E, Varnum SM, Ptashne M. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell. 1985;40(4):767–74.
Article
CAS
Google Scholar
Wang Y, Yu KF, Poysa V, Shi C, Zhou YH. A single point mutation in GmHMA3 affects cadmium (cd) translocation and accumulation in soybean seeds. Mol Plant. 2012;5(5):1154–6.
Article
CAS
Google Scholar
Mao X, Zhang H, Tian S, Chang X, Jing R. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot. 2010;61(3):683–96.
Article
CAS
Google Scholar
Zhang H, Mao X, Jing R, Chang X, Xie H. Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot. 2011;62(3):975–88.
Article
CAS
Google Scholar
Tian S, Mao X, Zhang H, Cheng S, Zhai C, Yang S, et al. Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot. 2013;64(7):2063–80.
Article
CAS
Google Scholar
González-Ballester D, Pollock SV, Pootakham W, Grossman AR. The central role of a SNRK2 kinase in sulfur deprivation responses. Plant Physiol. 2008;147(1):216–27.
Article
Google Scholar
Liang T, Ding H, Wang G, Kang J, Pang H, Lv J. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Ecotox Environ Safe. 2016;124(2016):129–37.
Article
CAS
Google Scholar
Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I.SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 2009;50(7):1345–63.
Article
CAS
Google Scholar
Cailliatte R, Schikora A, Briat JF, Mari S, Curie C. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell. 2010;22(3):904–17.
Article
CAS
Google Scholar
Wong CKE, Cobbett CS. HMA P-type ATPases are the major mechanism for root-to-shoot cd translocation in Arabidopsis thaliana. New Phytol. 2009;181(1):71–8.
Article
CAS
Google Scholar
Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 2009;150(2):786–800.
Article
CAS
Google Scholar
Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T. A specific transporter for iron (III)-phytosiderophore in barely roots. Plant J. 2006;46(4):563–72.
Article
CAS
Google Scholar
Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J. 2003;34(5):685–92.
Article
CAS
Google Scholar