Jones JD, Dangl JL. The plant immune system. Nature. 2006;444:323–9. https://doi.org/10.1038/nature05286.
Article
CAS
PubMed
Google Scholar
Moore JW, Loake GJ, Spoel SH. Transcription dynamics in plant immunity. Plant Cell. 2011;23:2809–20. https://doi.org/10.1105/tpc.111.087346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mou HQ, Lu J, Zhu SF, Lin CL, Tian GZ, Xu X, Zhao WJ. Transcriptomic analysis of Paulownia infected by Paulownia witches’-broom Phytoplasma. PLoS One. 2013;8:e77217. https://doi.org/10.1371/journal.pone.0077217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan G, Dong Y, Deng M, Zhao Z, Niu S, Xu E. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int J Mol Sci. 2014;15:23141–62. https://doi.org/10.3390/ijms151223141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mardi M, Karimi Farsad L, Gharechahi J, Salekdeh GH. In-depth transcriptome sequencing of Mexican lime trees infected with Candidatus Phytoplasma aurantifolia. PLoS One. 2015;10:e0130425. https://doi.org/10.1371/journal.pone.0130425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K. ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics. 2009;10:460. https://doi.org/10.1186/1471-2164-10-460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E, Ferrari F, Tagliafico E, Stefani E, Pecchioni N. Gene expression in grapevine cultivars in response to bois noir phytoplasma infection. Plant Sci. 2009;176:792–804. https://doi.org/10.1016/j.plantsci.2009.03.001.
Article
CAS
Google Scholar
Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Gen Genomics. 2015;290:1899–910. https://doi.org/10.1007/s00438-015-1046-2.
Article
CAS
Google Scholar
Rajesh MK, Rachana KE, Kulkarni K, Sahu BB, Thomas RJ, Karun A. Comparative transcriptome profiling of healthy and diseased Chowghat green dwarf coconut palms from root (wilt) disease hot spots. Eur J Plant Pathol. 2017;151:173–93. https://doi.org/10.1007/s10658-017-1365-8.
Article
Google Scholar
De Luca V, Capasso C, Capasso A, Pastore M, Carginale V. Gene expression profiling of phytoplasma-infected Madagascar periwinkle leaves using differential display. Mol Biol Rep. 2011;38:2993–3000. https://doi.org/10.1007/s11033-010-9964-x.
Article
CAS
PubMed
Google Scholar
Alvarez ME, Nota F, Cambiagno DA. Epigenetic control of plant immunity. Mol Plant Pathol. 2010;11:563–76. https://doi.org/10.1111/j.1364-3703.2010.00621.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger SL. Histone modifications in transcriptional regulation. Curr Opin Genet Dev. 2002;12:142–8. https://doi.org/10.1016/S0959-437X(02)00279-4.
Article
CAS
PubMed
Google Scholar
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95. https://doi.org/10.1038/cr.2011.22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. https://doi.org/10.1111/j.1364-3703.2010.00621.x.
Article
CAS
PubMed
Google Scholar
Probst AV, Scheid OM. Stress-induced structural changes in plant chromatin. Curr Opin Plant Biol. 2015;27:8–16. https://doi.org/10.1016/j.pbi.2015.05.011.
Article
CAS
PubMed
Google Scholar
Pfluger J, Wagner D. Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol. 2007;10:645–52. https://doi.org/10.1016/j.pbi.2007.07.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80. https://doi.org/10.1126/science.1063127.
Article
CAS
PubMed
Google Scholar
Berr A, Shafiq S, Shen WH. Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta. 1809;2011:567–76. https://doi.org/10.1016/j.bbagrm.2011.07.001.
Article
CAS
Google Scholar
Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K. Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta. 1819;2012:129–36. https://doi.org/10.1016/j.bbagrm.2011.06.008.
Article
CAS
Google Scholar
Ding B, Wang GL. Chromatin versus pathogens: the function of epigenetics in plant immunity. Front Plant Sci. 2015;6:675. https://doi.org/10.3389/fpls.2015.00675.
Article
PubMed
PubMed Central
Google Scholar
Ayyappan V, Kalavacharla V, Thimmapuram J, Bhide KP, Sripathi VR, Smolinski TG, et al. Genome-wide profiling of histone modifications (H3K9me2 and H4K12ac) and gene expression in rust (Uromyces appendiculatus) inoculated common bean (Phaseolus vulgaris L.). Plos One. 2014;10:e0132176. https://doi.org/10.1371/journal.pone.0132176.
Article
CAS
Google Scholar
Ding B, Bellizzi MR, Ning Y, Meyers BC, Wang GL. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell. 2012;24:3783–94. https://doi.org/10.1105/tpc.112.101972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi SM, Song HR, Han SK, Han M, Kim CY, Park J, et al. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J. 2012;71:135–46. https://doi.org/10.1111/j.1365-313X.2012.04977.x.
Article
CAS
PubMed
Google Scholar
Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T, Shen WH. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol. 2010;154:1403–14. https://doi.org/10.1104/pp.110.161497.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ates S, Ni Y, Akgul M, Tozluoglu A. Characterization and evaluation of Paulownia elongota as a raw material for paper production. Afr J Biotechnol. 2008;7:4153–8. https://doi.org/10.5897/AJB2008.000-5073.
Article
CAS
Google Scholar
López F, Pérez A, Zamudio MAM, Alva HED, García JC. Paulownia as raw material for solid biofuel and cellulose pulp. Biomass Bioenergy. 2012;45:77–86. https://doi.org/10.1016/j.biombioe.2012.05.010.
Article
CAS
Google Scholar
Hogenhout SA. Oshima K, Ammar eI-D, Kakizawa S, kingdom HN, Namba S. Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol. 2010;9:403–23. https://doi.org/10.1111/j.1364-3703.2008.00472.x.
Article
Google Scholar
Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, et al. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol. 2006;188:3682–96. https://doi.org/10.1128/JB.188.10.3682-3696.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S, et al. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet. 2004;36:27–9. https://doi.org/10.1038/ng1277.
Article
CAS
PubMed
Google Scholar
Tran-Nguyen LT, Kube M, Schneider B, Reinhardt R, Gibb KS. Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” Strains OY-M and AY-WB. J Bacteriol. 2008;190:3979–91. https://doi.org/10.1128/JB.01301-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor GD. Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr. 2012;51:607–17. https://doi.org/10.2298/GENSR1203701Z.
Article
CAS
Google Scholar
Contaldo N, Satta E, Zambon Y, Paltrinieri S, Bertaccini A. Development and evaluation of different complex media for phytoplasma isolation and growth. J Microbiol Methods. 2016;127:105–10. https://doi.org/10.1016/j.mimet.2016.05.031.
Article
CAS
PubMed
Google Scholar
Bertaccini A, Duduk B. Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr. 2009;48:355–78. https://doi.org/10.14601/Phytopathol_Mediterr-3300.
Article
CAS
Google Scholar
Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Annu Rev Entomol. 2006;51:91–111. https://doi.org/10.1146/annurev.ento.51.110104.151039.
Article
CAS
PubMed
Google Scholar
Christensen NM, Nicolaisen M, Hansen M, Schulz A. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant-Microbe Interact. 2004;17:1175–84.
Article
CAS
PubMed
Google Scholar
Hogenhout SA, Oshima K, Ammar e-D, Kakizawa S, Kingdom HN, Namba S. Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol. 2010;9:403–23. https://doi.org/10.1111/j.1364-3703.2008.00472.x.
Article
Google Scholar
Christensen NM, Axelsen KB, Nicolaisen M, Schulz A. Phytoplasmas and their interactions with hosts. Trends Plant Sci. 2005;10:526–35. https://doi.org/10.1016/j.tplants.2005.09.008.
Article
CAS
PubMed
Google Scholar
Lin C, Zhou T, Li H, Fan Z, Li Y, Piao C, et al. Molecular characterisation of two plasmids from paulownia witches’-broom phytoplasma and detection of a plasmid-encoded protein in infected plants. Eur J Plant Pathol. 2009;123:321–30. https://doi.org/10.1007/s10658-008-9369-z.
Article
CAS
Google Scholar
Yue H, Wu K, Wu Y, Zhang J, Sun R. Cloning and characterization of three subunits of the phytoplasma sec protein translocation system associated with the paulownia witches’-broom. Plant Prot. 2009;35:25–31.
CAS
Google Scholar
Sahashi N, Nakamura H, Yoshikawa N, Kubono T, Shoji T, Takahashi T. Distribution and seasonal variation in detection of phytoplasma in bark phloem tissues of single paulownia trees infected with witches’ broom. Jpn J Phytopathol. 2009;61:481–4. https://doi.org/10.3186/jjphytopath.61.481.
Article
Google Scholar
Yue H, Wu Y, Shi Y. Sequence analysis and structure prediction of antigenetic membrane protein gene from paulownia witches’-broom phytoplasma. Scientia Silvae Sinicae. 2009;45:147–51.
CAS
Google Scholar
Hu J, Tian G, Lin C, Song C, Mu H, Ren Z, et al. Cloning, expression and characterization of tRNA-isopentenyltransferase genes (tRNA-ipt) from paulownia witches’-broom phytoplasma. Acta Microbiol Sinica. 2013;53:832–41.
CAS
Google Scholar
Fan G, Jiang J. Study on the relation between witches’ broom, protein and amino acid change in Paulownia leaves. Forest Res. 1997;10:570–3. https://doi.org/10.13275/j.cnki.lykxyj.1997.06.002.
Article
Google Scholar
Fan G, Li Y, Zheng J, Zhai X. SDS-PAGE of proteins related to paulownia witche’s broom. Scientia Silvae Sinicae. 2003;39:119–22.
CAS
Google Scholar
Fan G, Zhang S, Zhai X, Liu F, Dong Z. Effects of antibiotics on the Paulownia witches’ broom phytoplasmas and pathogenic protein related to witches’ broom symptom. Scientia Silvae Sinicae. 2007;43:138–42.
CAS
Google Scholar
Fan G, Zeng H, Zhai X. Subcellular localization and mass spectrum identification of the protein related to Paulownia witches’ broom phytoplasma infection. Scientia Silvae Sinicae. 2008;44:83–9.
CAS
Google Scholar
Tian G, Li Y, Liang W, Piao C, Huang Q, Guo M. Influence of paulownia witches’-broom phytoplasma infection on hydrogen peroxide produce in affected tissues of tissue-cultured paulownia plantlets. Scientia Silvae Sinicae. 2010;46:96–104.
Google Scholar
Fan G, Zhang B, Zhai X, Liu F, Ma Y, Kan S. Effects of rifampin on the changes of morphology and plant endogenous hormones of Paulownia seedlings with witches’ broom. J Henan Agr Univ. 2007;41:387–90. https://doi.org/10.16445/j.cnki.1000-2340.2007.04.018.
Article
CAS
Google Scholar
Liu R, Dong Y, Fan G, Zhao Z, Deng M, Cao X, et al. Discovery of genes related to witches broom disease in Paulownia tomentosa × Paulownia fortunei by a De Novo assembled transcriptome. PLoS One. 2013;8:e80238. https://doi.org/10.1371/journal.pone.0080238.
Niu S, Fan G, Deng M, Zhao Z, Xu E, Cao L. Discovery of microRNAs and transcript targets related to witches’ broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach. Mol Gen Genomics. 2015;291:181–91. https://doi.org/10.1007/s00438-015-1102-y.
Article
CAS
Google Scholar
Cao X, Fan G, Dong Y, Zhao Z, Deng M, Wang Z, et al. Proteome profiling of Paulownia seedlings infected with phytoplasma. Front Plant Sci. 2017;8:342. https://doi.org/10.3389/fpls.2017.00342.
Article
PubMed
PubMed Central
Google Scholar
Cao Y, Fan G, Zhai X, Dong Y. Genome-wide analysis of lncRNAs in Paulownia tomentosa infected with phytoplasmas. Acta Physiol Plant. 2018;40:49. https://doi.org/10.1007/s11738-018-2627-6.
Article
CAS
Google Scholar
Cao Y, Zhai X, Deng M, Zhao Z, Fan G. Relationship between metabolites variation and Paulownia witches’ broom. Scientia Silvae Sinicae. 2017;53:85–93. https://doi.org/10.11707/j.1001-7488.20170610.
Article
Google Scholar
Cao X, Fan G, Zhao Z, Deng M, Dong Y. Morphological changes of Paulownia seedlings infected phytoplasmas reveal the genes associated with witches’ broom through AFLP and MSAP. PLoS One. 2014;9:e112533. https://doi.org/10.1371/journal.pone.0112533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu A, Greaves IK, Dennis ES, Peacock WJ. Genome-wide analyses of four major histone modifications in Arabidopsis hybrids at the germinating seed stage. BMC Genomics. 2017;18:137. https://doi.org/10.1186/s12864-017-3542-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Z, Song G, Liu Z, Qu X, Chen R, Jiang D, et al. Global epigenomic analysis indicates that Epialleles contribute to allele-specific expression via allele-specific histone modifications in hybrid rice. BMC Genomics. 2015;16:232. https://doi.org/10.1186/s12864-015-1454-z.
Article
PubMed
PubMed Central
Google Scholar
Brusslan JA, Bonora G, Rus-Canterbury AM, Tariq F, Jaroszewicz A, Pellegrini M. A genome-wide chronological study of gene expression and two histone modifications, H3K4me3 and H3K9ac, during developmental leaf senescence. Plant Physiol. 2015;168:1246–61. https://doi.org/10.1104/pp.114.252999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du Z, Li H, Wei Q, Zhao X, Wang C, Zhu Q, et al. Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica. Mol Plant. 2013;6:1463–72. https://doi.org/10.1093/mp/sst018.
Article
CAS
PubMed
PubMed Central
Google Scholar
He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell. 2010;22:17–33. https://doi.org/10.1105/tpc.109.072041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi Y, Yi X, Zhang K, Wang C, Ma X, Zhang X, et al. Genome-wide comparative analysis of H3K4me3 profiles between diploid and allotetraploid cotton to refine genome annotation. Sci Rep. 2017;7:9098. https://doi.org/10.1038/s41598-017-09680-6.
Article
CAS
Google Scholar
Hussey SG, Loots MT, van der Merwe K, Mizrachi E, Myburg AA. Integrated analysis and transcript abundance modelling of H3K4me3 and H3K27me3 in developing secondary xylem. Sci Rep. 2017;7:3370. https://doi.org/10.1038/s41598-017-03665-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 2011;30:1928–38. https://doi.org/10.1038/emboj.2011.103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong Y, Zhang H, Fan G, Zhai X, Wang Z, Cao Y. Comparative transcriptomics analysis of phytohormone-related genes and alternative splicing events related to witches’ broom in Paulownia. Forests. 2018;9:318. https://doi.org/10.3390/f9060318.
Article
Google Scholar
Ma W. Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Sci. 2011;181:342–6. https://doi.org/10.1016/j.plantsci.2011.06.002.
Article
CAS
PubMed
Google Scholar
Snedden WA, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 2001;151:35–66. https://doi.org/10.1046/j.1469-8137.2001.00154.x.
Article
CAS
PubMed
Google Scholar
Takabatake R, Karita E, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y. Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant Cell Physiol. 2007;48:414–23. https://doi.org/10.1093/pcp/pcm011.
Article
CAS
PubMed
Google Scholar
Chiasson D, Ekengren SK, Martin GB, Dobney SL, Snedden WA. Calmodulin-like proteins from Arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. tomato. Plant Mol Biol. 2005;58:887–97. https://doi.org/10.1007/s11103-005-8395-x.
Article
CAS
PubMed
Google Scholar
Leba LJ, Cheval C, Ortiz-Martín I, Ranty B, Beuzón CR, Galaud JP, et al. CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. Plant J. 2012;71:976–89. https://doi.org/10.1111/j.1365-313X.2012.05045.x.
Article
CAS
PubMed
Google Scholar
Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 2006;48:592–605. https://doi.org/10.1111/j.1365-313X.2006.02901.x.
Article
CAS
PubMed
Google Scholar
Merz PR, Moser T, Höll J, Kortekamp A, Buchholz G, Zyprian E, et al. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Physiol Plant. 2014;153:365–80. https://doi.org/10.1111/ppl.12251.
Article
CAS
PubMed
Google Scholar
Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, et al. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol Plant Pathol. 2015;15:677–89. https://doi.org/10.1111/mpp.12123.
Article
CAS
Google Scholar
Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell. 2011;23:1639–53. https://doi.org/10.1105/tpc.111.084996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 2012;159:266–85. https://doi.org/10.1104/pp.111.192641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tronchet M, Balagué C, Kroj T, Jouanin L, Roby D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol. 2010;11:83–92. https://doi.org/10.1111/j.1364-3703.2009.00578.x.
Article
CAS
PubMed
Google Scholar
Monavarfeshani A, Mirzaei M, Sarhadi E, Amirkhani A, Khayam Nekouei M, Haynes PA, et al. Shotgun proteomic analysis of the Mexican lime tree infected with “Candidatus Phytoplasma aurantifolia”. J Proteome Res. 2013;12:785–95. https://doi.org/10.1021/pr300865t.
Article
CAS
PubMed
Google Scholar
Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol. 2010;11:829–46. https://doi.org/10.1111/j.1364-3703.2010.00648.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelissen H, Boccardi TM, Himanen K, Van Lijsebettens M. Impact of core histone modifications on transcriptional regulation and plant growth. Crit Rev Plant Sci. 2007;26:243–63. https://doi.org/10.1080/07352680701612820.
Article
CAS
Google Scholar
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92. https://doi.org/10.1038/nrg3230.
Article
CAS
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53.
Article
CAS
PubMed
Google Scholar
Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nat Genet. 2006;38:S31–6.
Article
CAS
PubMed
Google Scholar
Fan G, Zhai X, Jiang J, Liu X. Callus induction from Paulownia plant leaves and their plantlet regenerations. Scientia Silvae Sinicae. 2002;38:29–35.
CAS
Google Scholar
Yao Z, Cao X, Zhai X, Fan G. Establishment of in vitro plantlet regeneration system by witches’ broom organ of two Paulownia species. J Henan Agr Univ. 2009;43:145–50. https://doi.org/10.16445/j.cnki.1000-2340.2009.02.016.
Article
Google Scholar
Wei Z, Zhong X, You J, Xiong L. Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol. 2013;81:175–88. https://doi.org/10.1007/s11103-012-9990-2.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26:589–95. https://doi.org/10.1093/bioinformatics/btp698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137. https://doi.org/10.1186/gb-2008-9-9-r137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie R, Jin Z, Ma Y, Pan X, Dong C, Pang S, et al. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots. Sci Rep. 2017;7:42094. https://doi.org/10.1038/srep42094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukhopadhyay A, Deplancke B, Walhout AJ, Tissenbaum HA. Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc. 2008;3:698–709. https://doi.org/10.1038/nprot.2008.38.
Article
CAS
PubMed
PubMed Central
Google Scholar