Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–68.
Article
CAS
PubMed
Google Scholar
Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al. A bivalent chromatin structure Marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.
Article
CAS
PubMed
Google Scholar
Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. 2013;153(4):759–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell. 2013;153(4):773–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, et al. Programming and inheritance of parental DNA methylomes in mammals. Cell. 2014;157(4):979–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu M, Long C, Chen X, Huang C, Chen S, Zhu B. Partitioning of histone H3-H4 tetramers during DNA replication–dependent chromatin assembly. Science. 2010;328(5974):94–8.
Article
CAS
PubMed
Google Scholar
Nakayama J-i, Rice JC, Strahl BD, Allis CD, Grewal SIS. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001;292(5514):110–3.
Article
CAS
PubMed
Google Scholar
Tran V, Lim C, Xie J, Chen X. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science. 2012;338(6107):679–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227.
Article
PubMed
PubMed Central
Google Scholar
Wu SF, Zhang H, Cairns BR. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res. 2011;21(4):578–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Wang C, Liu W, Li J, Li C, Kou X, Chen J, Zhao Y, Gao H, Wang H, et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature. 2016;537(7621):558–62.
Article
CAS
PubMed
Google Scholar
Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, Ming J, Wu X, Zhang Y, Xu Q, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature. 2016;537(7621):553–7.
Article
CAS
PubMed
Google Scholar
Joseph SR, Pálfy M, Hilbert L, Kumar M, Karschau J, Zaburdaev V, Shevchenko A, Vastenhouw NL. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. elife. 2017;6:e23326.
Article
PubMed
PubMed Central
Google Scholar
Vastenhouw NL, Zhang Y, Woods IG, Imam F, Regev A, Liu XS, Rinn J, Schier AF. Chromatin signature of embryonic pluripotency is established during genome activation. Nature. 2010;464:922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindeman LC, Andersen IS, Reiner AH, Li N, Aanes H, Ostrup O, Winata C, Mathavan S, Muller F, Alestrom P, et al. Prepatterning of developmental gene expression by modified histones before zygotic genome activation. Dev Cell. 2011;21(6):993–1004.
Article
CAS
PubMed
Google Scholar
Dahl JA, Collas P. A rapid micro chromatin immunoprecipitation assay (ChIP). Nat Protocols. 2008;3(6):1032–45.
Article
CAS
PubMed
Google Scholar
Lindeman LC, Vogt-Kielland LT, Aleström P, Collas P. Fish’n ChIPs: chromatin immunoprecipitation in the zebrafish embryo. In: Collas P, editor. Chromatin immunoprecipitation assays: methods and protocols. Totowa, NJ: Humana Press; 2009. p. 75–86.
Chapter
Google Scholar
Link V, Shevchenko A, Heisenberg C-P. Proteomics of early zebrafish embryos. BMC Dev Biol. 2006;6(1):1.
Article
PubMed
PubMed Central
Google Scholar
Bogdanovic O, Fernandez-Minan A, Tena JJ, De la Calle-Mustienes E, Hidalgo C, van Kruysbergen I, van Heeringen SJ, Veenstra GJ, Gomez-Skarmeta JL. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 2012;22(10):2043–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
de la Calle Mustienes E, Gomez-Skarmeta JL, Bogdanovic O. Genome-wide epigenetic cross-talk between DNA methylation and H3K27me3 in zebrafish embryos. Genomics data. 2015;6:7–9.
Article
PubMed
PubMed Central
Google Scholar
Zenk F, Loeser E, Schiavo R, Kilpert F, Bogdanović O, Iovino N. Germ line–inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science. 2017;357(6347):212–6.
Article
CAS
PubMed
Google Scholar
Vesterlund L, Jiao H, Unneberg P, Hovatta O, Kere J. The zebrafish transcriptome during early development. BMC Dev Biol. 2011;11(1):30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature. 2013;503(7476):360–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng AM, Thisse B, Thisse C, Wright CV. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus. Development. 2000;127(5):1049–61.
CAS
PubMed
Google Scholar
Hashimoto H, Uji S, Kurokawa T, Washio Y, Suzuki T. Flounder and fugu have a single lefty gene that covers the functions of lefty1 and lefty2 of zebrafish during L-R patterning. Gene. 2007;387(1–2):126–32.
Article
CAS
PubMed
Google Scholar
Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lesch BJ, Silber SJ, McCarrey JR, Page DC. Parallel evolution of male germline epigenetic poising and somatic development in animals. Nat Genet. 2016;48(8):888–94.
Article
CAS
PubMed
Google Scholar
Ng HH, Robert F, Young RA, Struhl K. Targeted recruitment of Set1 histone Methylase by elongating pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell. 2003;11(3):709–19.
Article
CAS
PubMed
Google Scholar
Nakamura T, Okamoto I, Sasaki K, Yabuta Y, Iwatani C, Tsuchiya H, Seita Y, Nakamura S, Yamamoto T, Saitou M. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature. 2016;537(7618):57–62.
Article
CAS
PubMed
Google Scholar
Li Y, Zheng H, Wang Q, Zhou C, Wei L, Liu X, Zhang W, Zhang Y, Du Z, Wang X, et al. Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biol. 2018;19(1):18.
Article
PubMed
PubMed Central
Google Scholar
Domazet-Loso T, Tautz D. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature. 2010;468(7325):815–8.
Article
CAS
PubMed
Google Scholar
Neme R, Tautz D. Phylogenetic patterns of emergence of new genes support a model of frequent de novoevolution. BMC Genomics. 2013;14(1):117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S, Hawkins RD, Leung D, et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell. 2013;153(5):1134–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T. Multigene phylogeny of choanozoa and the origin of animals. PLoS One. 2008;3(5):e2098.
Article
PubMed
PubMed Central
Google Scholar
Murphy PJ, Wu SF, James CR, Wike CL, Cairns BR. Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming. Cell. 2018;172(5):993–1006.e1013.
Article
CAS
PubMed
Google Scholar
Zhang B, Wu X, Zhang W, Shen W, Sun Q, Liu K, Zhang Y, Wang Q, Li Y, Meng A, et al. Widespread enhancer dememorization and promoter priming during parental-to-zygotic transition. Mol Cell. 2018;72(4):673–686.e676.
Article
PubMed
Google Scholar
Gupta T, Mullins MC. Dissection of organs from the adult zebrafish. J Vis Exp. 2010(37):e1717.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Meth. 2012;9(4):357–9.
Article
CAS
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
Article
PubMed
PubMed Central
Google Scholar
Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, Green MR. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics. 2010;11(1):237.
Article
PubMed
PubMed Central
Google Scholar
McCurley AT, Callard GV. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol. 2008;9(1):102.
Article
PubMed
PubMed Central
Google Scholar
Hahne F, Ivanek R. Visualizing genomic data using Gviz and Bioconductor. In: Mathé E, Davis S, editors. Statistical genomics: methods and protocols. New York, NY: Springer New York; 2016. p. 335–51.
Chapter
Google Scholar
Da Wei Huang BTS, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008, 4(1):44–57.
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.
Article
Google Scholar