World Health Organisation. Global Tuberculosis Report; 2015. p. 2015.
Google Scholar
Mariam SH, Werngren J, Aronsson J, Hoffner S, Andersson DI. Dynamics of Antibiotic Resistant Mycobacterium tuberculosis during Long-Term Infection and Antibiotic Treatment. PLoS One. 2011;6:e21147. https://dx.plos.org/10.1371/journal.pone.0021147.
Fortune SM. The surprising diversity of mycobacterium tuberculosis: change you can believe in. J Infect Dis. 2012;206:1642–4.
Article
Google Scholar
Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, et al. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J Infect Dis. 2012;206:1724–33 Available from: http://jid.oxfordjournals.org/lookup/doi/10.1093/infdis/jis601.
Article
CAS
Google Scholar
Clark TG, Mallard K, Coll F, Preston M, Assefa S, Harris D, et al. Elucidating emergence and transmission of multidrug-resistant tuberculosis in treatment experienced patients by whole genome sequencing. PLoS One. 2013;8:1–12.
Google Scholar
Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, et al. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat. Commun. 2015;6:7119 Available from: http://www.nature.com/ncomms/2015/150511/ncomms8119/full/ncomms8119.html.
Article
CAS
Google Scholar
Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7:51 Available from: http://genomemedicine.com/content/7/1/51.
Article
Google Scholar
Müller B, Borrell S, Rose G, Gagneux S. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet. 2013;29:160–9.
Article
Google Scholar
Telenti A, Imboden P, Marchesi F, Matter L, Schopfer K, Bodmer T, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993;341:647–51 Available from: http://linkinghub.elsevier.com/retrieve/pii/014067369390417F.
Article
CAS
Google Scholar
Moradigaravand D, Grandjean L, Martinez E, Li H, Zheng J, Coronel J, et al. DfrA-thyA double deletion in para -aminosalicylic acid resistant Mycobacterium tuberculosis Beijing strains. Antimicrob. Agents Chemother. 2016:AAC.00253, 16 Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.00253-16.
Galagan JE. Genomic insights into tuberculosis. Nat. Rev. genet. 2014;15:307–20 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24662221.
Article
CAS
Google Scholar
Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat. Genet. 2014;46:279–86 Available from: https://doi.org/10.1038/ng.2878.
Article
CAS
Google Scholar
Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K, Ali S, et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet. 2018;50:307–16 Available from: http://www.nature.com/articles/s41588-017-0029-0.
Article
Google Scholar
Sveinbjornsson G, Gudbjartsson DF, Halldorsson B V, Kristinsson KG, Gottfredsson M, Barrett JC, et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nat. Genet. 2016;48:318–322. Available from: http://www.nature.com/doifinder/10.1038/ng.3498.
Cain AK, Lees JA. Using genomics to combat infectious diseases on a global scale. Genome Biol; 2015;16:250. Available from: http://genomebiology.com/2015/16/1/250
Phelan J, Coll F, McNerney R, Ascher DB, Pires DE V., Furnham N, et al. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med; 2016;14:31. Available from: http://www.biomedcentral.com/1741-7015/14/31
Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. Efficient control of population structure in model organism association mapping. Genetics. 2008;178:1709–23 Available from: http://www.genetics.org/cgi/doi/10.1534/genetics.107.080101.
Article
Google Scholar
Earle SG, Wu C, Charlesworth J, Stoesser N, Gordon NC, Walker TM, et al. Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nat. Microbiol. 2016;1:16041. Available from: https://doi.org/10.1038/nmicrobiol.2016.41.
Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. 2013;45:1183–9. Available from: http://www.nature.com/articles/ng.2747.
Desjardins CA, Cohen KA, Munsamy V, Abeel T, Maharaj K, Walker BJ, et al. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat. Genet. 2016;48:1–9 Available from: http://www.nature.com/doifinder/10.1038/ng.3548.
Article
Google Scholar
Reed MB, Pichler VK, Mcintosh F, Mattia A, Fallow A, Masala S, et al. Major mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol. 2009;47:1119–28.
Article
CAS
Google Scholar
Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2012;367:850–9 Available from: http://rstb.royalsocietypublishing.org/content/367/1590/850.short.
Article
CAS
Google Scholar
Click ES, Moonan PK, Winston CA, Cowan LS, Oeltmann JE. Relationship between mycobacterium tuberculosis phylogenetic lineage and clinical site of tuberculosis. Clin Infect Dis. 2012;54:211–9.
Article
Google Scholar
Krishnan N, Malaga W, Constant P, Caws M, Thi Hoang Chau T, Salmons J, et al. Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles. PLoS One. 2011;6.
Portevin D, Gagneux S, Comas I, Young D. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog. 2011;7.
Mathema B, Kurepina N, Yang G, Shashkina E, Manca C, Mehaffy C, et al. Epidemiologic consequences of microvariation in Mycobacterium tuberculosis. J Infect Dis. 2012;205:964–74.
Article
Google Scholar
Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat. Genet. 2016; Available from: http://www.nature.com/doifinder/10.1038/ng.3704.
Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat. Commun. 2014;5:4812. Available from: http://www.nature.com/articles/ncomms5812.
Benavente ED, Coll F, Furnham N, McNerney R, Glynn JR, Campino S, et al. PhyTB: Phylogenetic tree visualisation and sample positioning for M. tuberculosis. BMC Bioinformatics. 2015;16:155. Available from: http://www.biomedcentral.com/1471-2105/16/155.
Perdigão J, Macedo R, Machado D, Silva C, Jordão L, Couto I, et al. GidB mutation as a phylogenetic marker for Q1 cluster Mycobacterium tuberculosis isolates and intermediate-level streptomycin resistance determinant in Lisbon, Portugal. Clin. Microbiol. Infect. 2014;20.
Machado D, Perdigão J, Ramos J, Couto I, Portugal I, Ritter C, et al. High-level resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J Antimicrob Chemother. 2013;68:1728–32.
Article
CAS
Google Scholar
Guerra-Assunção J, Crampin A, Houben R, Mzembe T, Mallard K, Coll F, et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife. 2015;4:1–17 Available from: http://elifesciences.org/lookup/doi/10.7554/eLife.05166.
Article
Google Scholar
Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, et al. High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography. Blaser MJ, editor. PLoS Biol. 2008;6:e311. Available from: https://dx.plos.org/10.1371/journal.pbio.0060311.
Dong Y, Qiu X, Shaw N, Xu Y, Sun Y, Li X, et al. Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from mycobacterium tuberculosis by flavonoid inhibitors. Protein Cell Higher Education Press. 2015;6:504–17.
Article
CAS
Google Scholar
Gannoun-Zaki L, Alibaud L, Kremer L. Point mutations within the fatty acid synthase type II dehydratase components HadA or HadC contribute to isoxyl resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013;57:629–32.
Article
CAS
Google Scholar
Nebenzahl-Guimaraes H, Van Laarhoven A, Farhat MR, Koeken VACM, Mandemakers JJ, Zomer A, et al. Transmissible mycobacterium tuberculosis strains share genetic markers and immune phenotypes. Am J Respir Crit Care Med. 2017;195:1519–27.
Article
CAS
Google Scholar
Chen Z, Hu Y, Cumming BM, Lu P, Feng L, Deng J, et al. Mycobacterial WhiB6 Differentially Regulates ESX-1 and the Dos Regulon to Modulate Granuloma Formation and Virulence in Zebrafish. Cell Rep. The Author(s); 2016;16:2512–2524. Available from: https://doi.org/10.1016/j.celrep.2016.07.080
Solans L, Aguiló N, Samper S, Pawlik A, Frigui W, Martín C, et al. A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies whiB6 as a novel ESX-1 component. Infect Immun. 2014;82:3446–56.
Article
Google Scholar
Chen T, He L, Deng W, Xie J. The Mycobacterium DosR regulon structure and diversity revealed by comparative genomic analysis. J Cell Biochem. 2013;6:1–6.
Article
CAS
Google Scholar
Domenech P, Zou J, Averback A, Syed N, Curtis D, Donato S, et al. Unique regulation of the DosR regulon in the Beijing lineage of Mycobacterium tuberculosis. J Bacteriol. 2017;199:1–19.
Article
Google Scholar
Shi T, Xie J. Molybdenum enzymes and molybdenum cofactor in mycobacteria. J Cell Biochem. 2011;112:2721–8.
Article
CAS
Google Scholar
Levillain F, Poquet Y, Mallet L, Mazères S, Marceau M, Brosch R, et al. Horizontal acquisition of a hypoxiaresponsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation. PLOS Pathog. 2017;13:e1006752. Available from: https://dx.plos.org/10.1371/journal.ppat.1006752.
Shah NS, Auld SC, Brust JCM, Mathema B, Ismail N, Moodley P, et al. Transmission of extensively drug-resistant tuberculosis in South Africa. N Engl J Med [Internet]. 2017;376:243–53 Available from: https://doi.org/10.1056/NEJMoa1604544.
Article
Google Scholar
Perdigão J, Silva H, Machado D, Macedo R, Maltez F, Silva C, et al. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting. BMC Genomics. 2014;15:991 Available from: http://www.biomedcentral.com/1471-2164/15/991.
Article
Google Scholar
Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843–51.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics [Internet]. 2009;25:2078–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19505943.
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2011;43:491–8.
Article
CAS
Google Scholar
Kozlov AM, Aberer AJ, Stamatakis A. ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics. 2015;31:2577–9.
Article
CAS
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.
Article
CAS
Google Scholar
Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. Nature Publishing Group; 2012;44:821–824. Available from: https://doi.org/10.1038/ng.2310.
Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. J. Open Source Softw. 2018;3:731. Available from: http://joss.theoj.org/papers/10.21105/joss.00731.
Core R. Team. R: a language and environment for statistical computing. [internet]. Vienna, Austria: R Foundation for Statistical. Computing. 2015; Available from: https://www.r-project.org/.
Torres JN, Paul LV, Rodwell TC, Victor TC, Amallraja AM, Elghraoui A, et al. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates. Emerg. Microbes Infect. 2015;4:e42 Available from: http://www.nature.com/doifinder/10.1038/emi.2015.42.
Article
CAS
Google Scholar