Boyer JS. Plant productivity and environment. Science. 1982;218:443–8. https://doi.org/10.1126/science.218.4571.443.
Article
CAS
PubMed
Google Scholar
Zheng Z, Zhang F, Ma F, Chai X, Zhu Z, Shi J, Zhang S. Spatiotemporal changes in soil salinity in a drip-irrigated field. Geoderma. 2009;149:243–8. https://doi.org/10.1016/j.geoderma.2008.12.002.
Article
Google Scholar
Larcher W. Physiological plant ecology:: ecophysiology and stress physiology of functional groups. 4th ed. Berlin. New York: Springer; 2003.
Book
Google Scholar
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63:1593–608. https://doi.org/10.1093/jxb/err460.
Article
CAS
PubMed
Google Scholar
Yamaguchi M, Sharp RE. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ. 2010;33:590–603. https://doi.org/10.1111/j.1365-3040.2009.02064.x.
Article
CAS
PubMed
Google Scholar
Rowe JH, Topping JF, Liu J, Lindsey K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol. 2016;211:225–39. https://doi.org/10.1111/nph.13882.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, et al. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep. 2016;6:19228. https://doi.org/10.1038/srep19228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, et al. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol. 2002;48:551–73. https://doi.org/10.1023/A:1014875215580.
Article
CAS
Google Scholar
Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi W, et al. Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J Exp Bot. 2004;55:2213–8. https://doi.org/10.1093/jxb/erh242.
Article
CAS
PubMed
Google Scholar
Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11:15–9. https://doi.org/10.1016/j.tplants.2005.11.002.
Article
CAS
PubMed
Google Scholar
Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203:32–43. https://doi.org/10.1111/nph.12797.
Article
PubMed
Google Scholar
Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, et al. ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One. 2016;11:e0147625. https://doi.org/10.1371/journal.pone.0147625.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 2002;130:1143–51. https://doi.org/10.1104/pp.006858.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem. 2013;63:49–60. https://doi.org/10.1016/j.plaphy.2012.11.004.
Article
CAS
PubMed
Google Scholar
Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 2014;37:1059–73. https://doi.org/10.1111/pce.12199.
Article
CAS
PubMed
Google Scholar
Sun C, Gao X, Fu J, Zhou J, Wu X. Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress. Plant Soil. 2015;388:99–117. https://doi.org/10.1007/s11104-014-2309-0.
Article
CAS
Google Scholar
Jogaiah S, Govind SR, Tran L-SP. Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol. 2013;33:23–39. https://doi.org/10.3109/07388551.2012.659174.
Article
PubMed
Google Scholar
Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl VV, et al. Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytologist. 2018. https://doi.org/10.1111/nph.15351.
Article
PubMed
Google Scholar
Mickky BM, Aldesuquy HS. Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes. Egypt J Basic Appl Sci. 2017;4:47–54. https://doi.org/10.1016/j.ejbas.2016.10.001.
Article
Google Scholar
Opitz N, Paschold A, Marcon C, Malik WA, Lanz C, Piepho H-P, Hochholdinger F. Transcriptomic complexity in young maize primary roots in response to low water potentials. BMC Genomics. 2014;15:741. https://doi.org/10.1186/1471-2164-15-741.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, et al. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol. 2004;55:807–23. https://doi.org/10.1007/s11103-004-1969-1.
Article
CAS
PubMed
Google Scholar
O'Green AT. Soil Water Dynamics. Nature Education Knowledge. 2012;3(6):12.
Google Scholar
Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci. 2011;4:2669. https://doi.org/10.1039/c1ee01029h.
Article
Google Scholar
Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24:23–58. https://doi.org/10.1080/07352680590910410.
Article
CAS
Google Scholar
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–50.
Article
CAS
PubMed
Google Scholar
Opitz N, Marcon C, Paschold A, Malik WA, Lithio A, Brandt R, et al. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. J Exp Bot. 2016;67:1095–107. https://doi.org/10.1093/jxb/erv453.
Article
CAS
PubMed
Google Scholar
Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ. Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics. 2006;6:143–56. https://doi.org/10.1007/s10142-005-0013-0.
Article
CAS
PubMed
Google Scholar
Coolen S, Proietti S, Hickman R, Davila Olivas NH, Huang P-P, van Verk MC, et al. Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant J. 2016;86:249–67. https://doi.org/10.1111/tpj.13167.
Article
CAS
PubMed
Google Scholar
Song L, Prince S, Valliyodan B, Joshi T, Maldonado dos Santos JV, Wang J, et al. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. BMC Genomics. 2016;17:57. https://doi.org/10.1186/s12864-016-2378-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prasch CM, Sonnewald U. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 2013;162:1849–66. https://doi.org/10.1104/pp.113.221044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaar-Moshe L, Blumwald E, Peleg Z. Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol. 2017;174:421–34. https://doi.org/10.1104/pp.17.00030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, et al. Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 2013;161:1783–94. https://doi.org/10.1104/pp.112.210773.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou A, Ma H, Liu E, Jiang T, Feng S, Gong S, Wang J. Transcriptome sequencing of dianthus spiculifolius and analysis of the genes involved in responses to combined cold and drought stress. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18040849.
Article
PubMed Central
Google Scholar
Sewelam N, Oshima Y, Mitsuda N, Ohme-Takagi M. A step towards understanding plant responses to multiple environmental stresses: a genome-wide study. Plant Cell Environ. 2014;37:2024–35. https://doi.org/10.1111/pce.12274.
Article
CAS
PubMed
Google Scholar
Ahmed IM, Nadira UA, Bibi N, Zhang G, Wu F. Tolerance to combined stress of drought and salinity in barley. Physiological, molecular and biochemical aspects; 2015. p. 93–121. https://doi.org/10.1007/978-3-319-07899-1_5.
Book
Google Scholar
Fukuda H. Plant cell wall patterning and cell shape. Hoboken: Wiley; 2015.
Google Scholar
Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 2016;35:949–65. https://doi.org/10.1007/s00299-016-1948-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Thorne ET, Sharp RE, Cosgrove DJ. Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol. 2001;126:1471–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling. Annu Rev Plant Biol. 2018;69:209–36. https://doi.org/10.1146/annurev-arplant-042817-040322.
Article
CAS
PubMed
Google Scholar
Mittler R, Vanderauwera S, Gollery M, van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–8. https://doi.org/10.1016/j.tplants.2004.08.009.
Article
CAS
PubMed
Google Scholar
Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45:D1040–5. https://doi.org/10.1093/nar/gkw982.
Article
CAS
PubMed
Google Scholar
Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134:1683–96. https://doi.org/10.1104/pp.103.033431.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashoub A, Müller N, Jiménez-Gómez JM, Brüggemann W. Prominent alterations of wild barley leaf transcriptome in response to individual and combined drought acclimation and heat shock conditions. Physiol Plant. 2018;163:18–29. https://doi.org/10.1111/ppl.12667.
Article
CAS
PubMed
Google Scholar
Guo M, Liu J-H, Ma X, Luo D-X, Gong Z-H, Lu M-H. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci. 2016;7:114. https://doi.org/10.3389/fpls.2016.00114.
Article
PubMed
PubMed Central
Google Scholar
Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. 2015;15:152. https://doi.org/10.1186/s12870-015-0511-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics. 2007;8:125. https://doi.org/10.1186/1471-2164-8-125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsumoto T, Morishige H, Tanaka T, Kanamori H, Komatsuda T, Sato K, et al. Transcriptome analysis of barley identifies heat shock and HD-zip I transcription factors up-regulated in response to multiple abiotic stresses. Mol Breeding. 2014;34:761–8. https://doi.org/10.1007/s11032-014-0048-9.
Article
CAS
Google Scholar
Sun W, Bernard C, van de Cotte B, van Montagu M, Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 2001;27:407–15.
Article
CAS
PubMed
Google Scholar
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006;140:411–32. https://doi.org/10.1104/pp.105.073783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heyman J, Canher B, Bisht A, Christiaens F, de Veylder L. Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. J Cell Sci. 2018. https://doi.org/10.1242/jcs.208215.
Article
Google Scholar
Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J. 2011;9:230–49. https://doi.org/10.1111/j.1467-7652.2010.00547.x.
Article
CAS
PubMed
Google Scholar
Xu Z-S, Chen M, Li L-C, Ma Y-Z. Functions of the ERF transcription factor family in plants. Botany. 2008;86:969–77. https://doi.org/10.1139/B08-041.
Article
CAS
Google Scholar
Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003;33:751–63.
Article
CAS
PubMed
Google Scholar
Corrêa LGG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One. 2008. https://doi.org/10.1371/journal.pone.0002944.
Article
PubMed
PubMed Central
Google Scholar
Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol. 2004;5:226. https://doi.org/10.1186/gb-2004-5-6-226.
Article
PubMed
PubMed Central
Google Scholar
Makkena S, Lamb RS. The bHLH transcription factor SPATULA regulates root growth by controlling the size of the root meristem. BMC Plant Biol. 2013;13(1). https://doi.org/10.1186/1471-2229-13-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Berkeley: College of Agriculture, University of California; 1938.
Google Scholar
R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria.
Kassambara A. ggpubr: 'ggplot2' Based publication ready plots; 2017.
Google Scholar
Fox J, Weisberg S. An R companion to applied regression: second edition. 2nd ed. Los Angeles, London, New Delhi, Singapore, Washington DC: Sage; 2011.
de Mendiburu F. agricolae: Statistical Procedures for Agricultural Research; 2017.
Google Scholar
Ludwig Y, Zhang Y, Hochholdinger F. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development. PLoS One. 2013;8:e78859. https://doi.org/10.1371/journal.pone.0078859.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–33. https://doi.org/10.1038/nature22043.
Article
CAS
PubMed
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29. https://doi.org/10.1186/gb-2014-15-2-r29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3. https://doi.org/10.2202/1544-6115.1027.
Article
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:W122–9. https://doi.org/10.1093/nar/gkx382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800. https://doi.org/10.1371/journal.pone.0021800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayer KFX, Waugh R, Brown JWS, Schulman A, Langridge P, Platzer M, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–6. https://doi.org/10.1038/nature11543.
Article
CAS
PubMed
Google Scholar