Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol. 2013;20(3):282–9.
Article
CAS
PubMed
Google Scholar
Fraser R, Lin CJ. Epigenetic reprogramming of the zygote in mice and men: on your marks, get set, go! Reproduction. 2016;152(6):R211–22.
Article
PubMed
PubMed Central
Google Scholar
Nashun B, Hill PW, Hajkova P. Reprogramming of cell fate: epigenetic memory and the erasure of memories past. EMBO J. 2015;34(10):1296–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saksouk N, Simboeck E, Dejardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin. 2015;8:3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vos LJ, Famulski JK, Chan GK. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem Cell Biol. 2006;84(4):619–39.
Article
CAS
PubMed
Google Scholar
Daujat S, Weiss T, Mohn F, Lange UC, Ziegler-Birling C, Zeissler U, Lappe M, Schubeler D, Torres-Padilla ME, Schneider R. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat Struct Mol Biol. 2009;16(7):777–81.
Article
CAS
PubMed
Google Scholar
Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, et al. Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci. 2004;117(Pt 12):2491–501.
Article
CAS
PubMed
Google Scholar
Liu H, Kim JM, Aoki F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development. 2004;131(10):2269–80.
Article
CAS
PubMed
Google Scholar
Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH, et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet. 2008;40(4):411–20.
Article
CAS
PubMed
Google Scholar
Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP. Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One. 2010;5(5):e10531.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aguirre-Lavin T, Adenot P, Bonnet-Garnier A, Lehmann G, Fleurot R, Boulesteix C, Debey P, Beaujean N. 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev Biol. 2012;12:30.
Article
PubMed
PubMed Central
Google Scholar
Burns KH, Viveiros MM, Ren Y, Wang P, DeMayo FJ, Frail DE, Eppig JJ, Matzuk MM. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science. 2003;300(5619):633–6.
Article
CAS
PubMed
Google Scholar
Burton A, Torres-Padilla ME. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol. 2014;15(11):723–34.
Article
CAS
PubMed
Google Scholar
Probst AV, Santos F, Reik W, Almouzni G, Dean W. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma. 2007;116(4):403–15.
Article
PubMed
Google Scholar
Fadloun A, Eid A, Torres-Padilla ME. Mechanisms and dynamics of heterochromatin formation during mammalian development: closed paths and open questions. Curr Top Dev Biol. 2013;104:1–45.
Article
CAS
PubMed
Google Scholar
Martin C, Beaujean N, Brochard V, Audouard C, Zink D, Debey P. Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol. 2006;292(2):317–32.
Article
CAS
PubMed
Google Scholar
van de Werken C, van der Heijden GW, Eleveld C, Teeuwssen M, Albert M, Baarends WM, Laven JS, Peters AH, Baart EB. Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications. Nat Commun. 2014;5:5868.
Article
PubMed
CAS
Google Scholar
Jachowicz JW, Santenard A, Bender A, Muller J, Torres-Padilla ME. Heterochromatin establishment at pericentromeres depends on nuclear position. Genes Dev. 2013;27(22):2427–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell. 2010;19(4):625–38.
Article
CAS
PubMed
Google Scholar
Jagannathan M, Yamashita YM. Function of junk: Pericentromeric Satellite DNA in chromosome maintenance. Cold Spring Harbor symposia on quantitative biology; 2018.
Google Scholar
Casanova M, Pasternak M, El Marjou F, Le Baccon P, Probst AV, Almouzni G. Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Rep. 2013;4(6):1156–67.
Article
CAS
PubMed
Google Scholar
Magaraki A, van der Heijden G, Sleddens-Linkels E, Magarakis L, van Cappellen WA, Peters A, Gribnau J, Baarends WM, Eijpe M. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin. 2017;10:11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maison C, Bailly D, Roche D, Montes de Oca R, Probst AV, Vassias I, Dingli F, Lombard B, Loew D, Quivy JP, et al. SUMOylation promotes de novo targeting of HP1alpha to pericentric heterochromatin. Nat Genet. 2011;43(3):220–7.
Article
CAS
PubMed
Google Scholar
Maison C, Quivy JP, Almouzni G. Suv39h1 links the SUMO pathway to constitutive heterochromatin. Mol Cell Oncol. 2016;3(6):e1225546.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7(12):e1002384.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.
Article
CAS
PubMed
Google Scholar
Criscione SW, Zhang Y, Thompson W, Sedivy JM, Neretti N. Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics. 2014;15:583.
Article
PubMed
PubMed Central
Google Scholar
Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, Contino G, Deshpande V, Iafrate AJ, Letovsky S, et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 2011;331(6017):593–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature. 2011;477(7363):179–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ 3rd, Lohr JG, Harris CC, Ding L, Wilson RK, et al. Landscape of somatic retrotransposition in human cancers. Science. 2012;337(6097):967–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crow MK. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity. 2010;43(1):7–16.
Article
CAS
PubMed
Google Scholar
Hancks DC, Kazazian HH Jr. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7:9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao L, Wu K, Liu Z, Yao X, Yuan S, Tao W, Yi L, Yu G, Hou Z, Fan D, et al. Chromatin accessibility landscape in human early embryos and its association with evolution. Cell. 2018;173(1):248–259 e215.
Article
CAS
PubMed
Google Scholar
Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, Martin L, Ware CB, Blish CA, Chang HY, et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature. 2015;522(7555):221–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H, Reik W, Smith A, Sasaki E, Nichols J, Bertone P. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development. 2018;145(21). https://doi.org/10.1242/dev.167833.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20(9):1131–9.
Article
CAS
PubMed
Google Scholar
Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, Yan J, Ren X, Lin S, Li J, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–10.
Article
CAS
PubMed
Google Scholar
Li L, Guo F, Gao Y, Ren Y, Yuan P, Yan L, Li R, Lian Y, Li J, Hu B, et al. Single-cell multi-omics sequencing of human early embryos. Nat Cell Biol. 2018;20(7):847–58.
Article
CAS
PubMed
Google Scholar
Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP, Codeluppi S, Plaza Reyes A, Linnarsson S, Sandberg R, Lanner F. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;165(4):1012–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Xu J, Liu B, Yao G, Wang P, Lin Z, Huang B, Wang X, Li T, Shi S, et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature. 2018;557(7704):256–60.
Article
CAS
PubMed
Google Scholar
Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6:11.
Article
PubMed
PubMed Central
Google Scholar
Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–61.
Article
CAS
PubMed
Google Scholar
Jukam D, Shariati SAM, Skotheim JM. Zygotic genome activation in vertebrates. Dev Cell. 2017;42(4):316–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niakan KK, Han J, Pedersen RA, Simon C, Pera RA. Human pre-implantation embryo development. Development. 2012;139(5):829–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blakeley P, Fogarty NM, del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie L, Robson P, Niakan KK. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development. 2015;142(18):3151–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chazaud C, Yamanaka Y. Lineage specification in the mouse preimplantation embryo. Development. 2016;143(7):1063–74.
Article
CAS
PubMed
Google Scholar
De Paepe C, Krivega M, Cauffman G, Geens M, Van de Velde H. Totipotency and lineage segregation in the human embryo. Mol Hum Reprod. 2014;20(7):599–618.
Article
PubMed
Google Scholar
Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP, Codeluppi S, Reyes AP, Linnarsson S, Sandberg R, Lanner F. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;167(1):285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piotrowska-Nitsche K, Zernicka-Goetz M. Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo. Mech Dev. 2005;122(4):487–500.
Article
CAS
PubMed
Google Scholar
Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature. 2007;445(7124):214–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantsoki A, Devailly G, Joshi A. Gene expression variability in mammalian embryonic stem cells using single cell RNA-seq data. Comput Biol Chem. 2016;63:52–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrido-Ramos MA, Satellite DNA. An evolving topic. Genes (Basel). 2017;8(9). https://doi.org/10.3390/genes8090230.
Article
PubMed Central
CAS
Google Scholar
Mayor R, Izquierdo-Bouldstridge A, Millan-Arino L, Bustillos A, Sampaio C, Luque N, Jordan A. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions. J Biol Chem. 2015;290(12):7474–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Floutsakou I, Agrawal S, Nguyen TT, Seoighe C, Ganley AR, McStay B. The shared genomic architecture of human nucleolar organizer regions. Genome Res. 2013;23(12):2003–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowden DW, Krawchuk MD, Weaver EJ, Howard TD, Knowlton RG, Rao PN, Pettenati MJ, Hayworth R, Wagner BJ, Rothschild CB. D20S16 is a complex interspersed repeated sequence: genetic and physical analysis of the locus. Genomics. 1995;25(2):394–403.
Article
CAS
PubMed
Google Scholar
Ge SX. Exploratory bioinformatics investigation reveals importance of "junk" DNA in early embryo development. BMC Genomics. 2017;18(1):200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu F, Liu Y, Inoue A, Suzuki T, Zhao K, Zhang Y. Establishing chromatin regulatory landscape during mouse preimplantation development. Cell. 2016;165(6):1375–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, Eggan K, Meissner A. DNA methylation dynamics of the human preimplantation embryo. Nature. 2014;511(7511):611–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J, et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol. 2018;20(5):620–31.
Article
CAS
PubMed
Google Scholar
Cheng Y, Lund E, Kahan BW, Dahlberg JE. Control of mouse U1 snRNA gene expression during in vitro differentiation of mouse embryonic stem cells. Nucleic Acids Res. 1997;25(11):2197–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lobo SM, Marzluff WF, Seufert AC, Dean WL, Schultz GA, Simerly C, Schatten G. Localization and expression of U1 RNA in early mouse embryo development. Dev Biol. 1988;127(2):349–61.
Article
CAS
PubMed
Google Scholar
Lund E, Kahan B, Dahlberg JE. Differential control of U1 small nuclear RNA expression during mouse development. Science. 1985;229(4719):1271–4.
Article
CAS
PubMed
Google Scholar
Enright CA, Maxwell ES, Eliceiri GL, Sollner-Webb B. 5′ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. RNA. 1996;2(11):1094–9.
CAS
PubMed
PubMed Central
Google Scholar
Peculis BA. The sequence of the 5′ end of the U8 small nucleolar RNA is critical for 5.8S and 28S rRNA maturation. Mol Cell Biol. 1997;17(7):3702–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiedge H, Chen W, Brosius J. Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci. 1993;13(6):2382–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9:559.
Article
CAS
Google Scholar
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.
Article
PubMed
Google Scholar
The Gene Ontology C. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017;45(D1):D331–8.
Article
CAS
Google Scholar
Yagi M, Uchiumi T, Takazaki S, Okuno B, Nomura M, Yoshida S, Kanki T, Kang D. p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability. Nucleic Acids Res. 2012;40(19):9717–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunwell TL, Holland PWH. A sister of NANOG regulates genes expressed in pre-implantation human development. Open Biol. 2017;7(4). https://doi.org/10.1098/rsob.170027.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee A, Jimenez A, Cui G, Haeseleer F. Phosphorylation of the Ca2+−binding protein CaBP4 by protein kinase C zeta in photoreceptors. J Neurosci. 2007;27(46):12743–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction. 2015;150(3):R109–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okae H, Chiba H, Hiura H, Hamada H, Sato A, Utsunomiya T, Kikuchi H, Yoshida H, Tanaka A, Suyama M, et al. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet. 2014;10(12):e1004868.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development. 2012;139(1):15–31.
Article
CAS
PubMed
Google Scholar
Zhu P, Guo H, Ren Y, Hou Y, Dong J, Li R, Lian Y, Fan X, Hu B, Gao Y, et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet. 2018;50(1):12–9.
Article
CAS
PubMed
Google Scholar
Yang J, Liu P. Cell lineage specification at single cell resolution. Stem Cell Investig. 2017;4:76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Biase FH, Cao X, Zhong S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res. 2014;24(11):1787–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Zheng P, Dean J. Maternal control of early mouse development. Development. 2010;137(6):859–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martens JH, O'Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 2005;24(4):800–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Natisvili T, Yandim C, Silva R, Emanuelli G, Krueger F, Nageshwaran S, Festenstein R. Transcriptional activation of Pericentromeric Satellite repeats and disruption of Centromeric clustering upon proteasome inhibition. PLoS One. 2016;11(11):e0165873.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee MT, Bonneau AR, Giraldez AJ. Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol. 2014;30:581–613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solovyov A, Vabret N, Arora KS, Snyder A, Funt SA, Bajorin DF, Rosenberg JE, Bhardwaj N, Ting DT, Greenbaum BD. Global Cancer transcriptome quantifies repeat element polarization between immunotherapy responsive and T cell suppressive classes. Cell Rep. 2018;23(2):512–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shirai A, Kawaguchi T, Shimojo H, Muramatsu D, Ishida-Yonetani M, Nishimura Y, Kimura H, Nakayama JI, Shinkai Y. Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. eLife. 2017;6. https://doi.org/10.7554/eLife.25317.
Papin C, Ibrahim A, Gras SL, Velt A, Stoll I, Jost B, Menoni H, Bronner C, Dimitrov S, Hamiche A. Combinatorial DNA methylation codes at repetitive elements. Genome Res. 2017;27(6):934–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, Krueger F, Sanguinetti G, Kelsey G, Marioni JC, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun. 2018;9(1):781.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leinonen R, Sugawara H, Shumway M. International nucleotide sequence database C: The sequence read archive. Nucleic Acids Res. 2011;39(Database issue):D19–21.
Article
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011;12:323.
Article
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics. 2008;24(5):719–20.
Article
CAS
PubMed
Google Scholar
Quinlan AR. BEDTools: The Swiss-Army tool for genome feature analysis. Curr Protoc Bioinformatics. 2014;47:11 12 11–34.
Article
PubMed
Google Scholar
Karakulah G, Suner A. PlanTEnrichment: a tool for enrichment analysis of transposable elements in plants. Genomics. 2017;109(5–6):336–40.
Article
CAS
PubMed
Google Scholar
Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature. 2011;480(7378):490–5.
Article
CAS
PubMed
Google Scholar