Elwell C, Mirrashidi K, Engel J.Chlamydia cell biology and pathogenesis. Nat Rev Microbiol. 2016; 14(6):385–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nunes A, Gomes J. Evolution, phylogeny, and molecular epidemiology of Chlamydia. Infect Genet Evol. 2014; 23:49–64.
Article
CAS
PubMed
Google Scholar
Taylor-Brown A, Bachmann NL, Borel N, Polkinghorne A. Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genomics. 2016; 17(1):710. https://doi.org/10.1186/s12864-016-3055-x.
Staub E, Marti H, Biondi R, Levi A, Donati M, Leonard C, Ley S, Pillonel T, Greub G, Seth-Smith H, Borel N. Novel Chlamydia species isolated from snakes are temperature-sensitive and exhibit decreased susceptibility to azithromycin. Sci Rep. 2018; 8:5660. https://doi.org/10.1038/s41598-018-23897-z.
Seth-Smith H, Wanninger S, Bachmann N, Marti H, Qi W, Donati M, Francesco A, Polkinghorne A, Borel N. The Chlamydia suis genome exhibits high levels of diversity, plasticity, and mobile antibiotic resistance: Comparative genomics of a recent livestock cohort shows influence of treatment regimes. Genome Biol Evol. 2017; 9:750–60. https://doi.org/10.1093/gbe/evx043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor-Brown A, Spang L, Borel N, Polkinghorne A. Culture-independent metagenomics supports discovery of uncultivable bacteria within the genus Chlamydia. Sci Rep. 2017; 7:10661. https://doi.org/10.1038/s41598-017-10757-5.
European Centre for Disease Prevention and Control. Guidance on chlamydia control in Europe. Stockholm: ECDC; 2016. https://doi.org/10.2900/667703.
Hocking JS, Temple-Smith M, Guy R, Donovan B, Braat S, Law M, Gunn J, Regan D, Vaisey A, Bulfone L, Kaldor J, Fairley CK, Low N. Population effectiveness of opportunistic chlamydia testing in primary care in australia: a cluster-randomised controlled trial. Lancet. 2018; 392:1413–22.
Article
PubMed
Google Scholar
Campbell L, Rosenfeld M. Persistent C. pneumoniae infection in atherosclerotic lesions: rethinking the clinical trials. Front Cell Infect Microbiol. 2014; 4:34.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chumduri C, Gurumurthy R, Zadora P, Mi Y, Meyer T. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response. Cell Host Microbe. 2013; 13(6):746–58.
Article
CAS
PubMed
Google Scholar
AbdelRahman Y, Belland R. The chlamydial developmental cycle. FEMS Microbiol Rev. 2005; 29(5):949–59.
Article
CAS
PubMed
Google Scholar
Barry Cr, Hayes S, Hackstadt T. Nucleoid condensation in Escherichia Coli that express a chlamydial histone homolog. Science. 1992; 256(5055):377–79.
Article
CAS
PubMed
Google Scholar
Omsland A, Sixt B, Horn M, Hackstadt T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev. 2014; 38(4):779–801.
Article
CAS
PubMed
Google Scholar
Shaw E, Dooley C, Fischer E, Scidmore M, Fields K, Hackstadt T. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol. 2000; 37(4):913–25.
Article
CAS
PubMed
Google Scholar
Moore E, Ouellette S. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins. Front Cell Infect Microbiol. 2014; 4:157.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koonin E, Wolf Y. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 2008; 36(21):6688–719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moran N. Microbial minimalism: genome reduction in bacterial pathogens. Cell. 2002; 108(5):583–6.
Article
CAS
PubMed
Google Scholar
Domman D, Horn M. Following the footsteps of chlamydial gene regulation. Mol Biol Evol. 2015; 32(12):3035–46.
CAS
PubMed
PubMed Central
Google Scholar
Bachmann N, Polkinghorne A, Timms P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol. 2014; 22(8):464–72.
Article
CAS
PubMed
Google Scholar
Read T, Brunham R, Shen C, Gill S, Heidelberg J, White O, Hickey E, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, Deboy R, Kolonay J, McClarty G, Salzberg S, Eisen J, Fraser C. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39,. Nucleic Acids Res. 2000; 28(6):1397–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collingro A, Tischler P, Weinmaier T, Penz T, Heinz E, Brunham R, Read T, Bavoil P, Sachse K, Kahane S, Friedman M, Rattei T, Myers G, Horn M. Unity in variety - the pan-genome of the Chlamydiae,. Mol Biol Evol. 2011; 28(12):3253–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joseph S, Marti H, Didelot X, Read T, Dean D. Tetracycline selective pressure and homologous recombination shape the evolution of Chlamydia suis: A recently identified zoonotic pathogen. Genome Biol Evol. 2016; 8(8):2613–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Read TD, Joseph SJ, Didelot X, Liang B, Patel L, Dean D. Comparative analysis of Chlamydia psittaci genomes reveals the recent emergence of a pathogenic lineage with a broad host range. mBio. 2013; 4(2).
Harris SR, Clarke IN, Seth-Smith HMB, Solomon AW, Cutcliffe LT, Marsh P, Skilton RJ, Holland MJ, Mabey D, Peeling RW, Lewis DA, Spratt BG, Unemo M, Persson K, Bjartling C, Brunham R, de Vries HJC, Morré SA, Speksnijder A, Bébéar CM, Clerc M, de Barbeyrac B, Parkhill J, Thomson NR. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet. 2012; 44:413–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vorimore F, Hsia R, Huot-Creasy H, Bastian S, Deruyter L, Passet A, Sachse K, Bavoil P, Myers G, Laroucau K.Isolation of a new Chlamydia species from the feral sacred ibis (Threskiornis aethiopicus): Chlamydia ibidis. PloS ONE. 2013; 8(9):74823.
Article
CAS
Google Scholar
Sachse K, Laroucau K, Riege K, Wehner S, Dilcher M, Creasy H, Weidmann M, Myers G, Vorimore F, Vicari N, Magnino S, Liebler-Tenorio E, Ruettger A, Bavoil P, Hufert F, Rosselló-Mora R, Marz M.Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov. Syst Appl Microbiol. 2014; 37(2):79–88.
Article
PubMed
Google Scholar
Sachse K, Bavoil P, Kaltenboeck B, Stephens R, Kuo C, Rosselló-Mora R, Horn M. Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species. Syst Appl Microbiol. 2015; 38(2):99–103.
Article
PubMed
Google Scholar
Belland R, Scidmore M, Crane D, Hogan D, Whitmire W, McClarty G, Caldwell H. Chlamydia trachomatis cytotoxicity associated with complete and partial cytotoxin genes. Proc Natl Acad Sci USA. 2001; 98(24):13984–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomes J, Nunes A, Bruno W, Borrego M, Florindo C, Dean D. Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: evidence for serovar Da recombination and correlation with tissue tropism. J Bacteriol. 2006; 188(1):275–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dehoux P, Flores R, Dauga C, Zhong G, Subtil A. Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genomics. 2011; 12:109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson D, Crane D, Taylor L, Dorward D, Goheen M, Caldwell H. Inhibition of chlamydiae by primary alcohols correlates with the strain-specific complement of plasticity zone phospholipase D genes. Infect Immun. 2006; 74(1):73–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caldwell H, Wood H, Crane D, Bailey R, Jones R, Mabey D, Maclean I, Mohammed Z, Peeling R, Roshick C, Schachter J, Solomon A, Stamm W, Suchland R, Taylor L, West S, Quinn T, Belland R, McClarty G. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest. 2003; 111(11):1757–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tettelin H, Masignani V, Cieslewicz M, Donati C, Medini D, Ward N, Angiuoli S, Crabtree J, Jones A, Durkin A, Deboy R, Davidsen T, Mora M, Scarselli M, Ros I, Peterson J, Hauser C, Sundaram J, Nelson W, Madupu R, Brinkac L, Dodson R, Rosovitz M, Sullivan S, Daugherty S, Haft D, Selengut J, Gwinn M, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor K, Smith S, Utterback T, White O, Rubens C, Grandi G, Madoff L, Kasper D, Telford J, Wessels M, Rappuoli R, Fraser C. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”, Vol. 102; 2005. pp. 13950–5.
Gordienko E, Kazanov M, Gelfand M. Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J Bacteriol. 2013; 195(12):2786–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moldovan M, Gelfand M. Pangenomic definition of prokaryotic species and the phylogenetic structure of Prochlorococcus spp. Front Microbiol. 2018; 9:428.
Article
PubMed
PubMed Central
Google Scholar
Rouli L, Merhej V, Fournier P, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect. 2015; 7:72–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Psomopoulos F, Siarkou V, Papanikolaou N, Iliopoulos I, Tsaftaris A, Promponas V, Ouzounis C. The chlamydiales pangenome revisited: structural stability and functional coherence. Genes. 2012; 3(2):291–319.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen F, Mackey A, Stoeckert CJ, Roos D. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006; 34(Database issue):363–8.
Article
CAS
Google Scholar
Overbeek R., RO, Pusch G., Olsen G., Davis J., Disz T., Edwards R., Gerdes S., Parrello B., Shukla M., Vonstein V., Wattam A., Xia F., Stevens R.The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014; 42(Database issue):206–14.
Article
CAS
Google Scholar
Everett K, Bush R, Andersen A. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol. 1999; 49(Pt 2):415–40.
Article
CAS
PubMed
Google Scholar
Stephens R, Myers G, Eppinger M, Bavoil P. Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol Med Microbiol. 2009; 55(2):115–9.
Article
CAS
PubMed
Google Scholar
Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 1987; 43:783–91.
Article
CAS
PubMed
Google Scholar
Finn R, Coggill P, Eberhardt R, R Eddy S, Mistry J, L Mitchell A, C Potter S, Punta M, Qureshi M, Sangrador-Vegas A, A Salazar G, Tate J, Bateman A. The pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2015; 44:279–85. https://doi.org/10.1093/nar/gkv1344.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ashburner MM, Ball CAC, Blake J, Botstein D, Butler H, Cherry JMJ, Davis AP, Dolinski K, Dwight S, Eppig J, Harris M, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese J, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat Genet. 2000; 25:25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu L, Chen H, Hu X, Zhang R, Zhang Z, Luo Z. Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms. Mol Biol Evol. 2006; 23(6):1107–8.
Article
CAS
PubMed
Google Scholar
Galperin M, Makarova K, Wolf Y, Koonin E. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015; 43(Database issue):261–9.
Article
CAS
Google Scholar
Omsland A, Sager J, Nair V, Sturdevant D, Hackstadt T. Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium, Vol. 109; 2012. pp. 19781–5.
Schwöppe C, Winkler H, Neuhaus H. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J Bacteriol. 2002; 184(8):2108–15.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tjaden J, Winkler H, Schwöppe C, van der Laan M, Möhlmann T, Neuhaus H. Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J Bacteriol. 1999; 181(4):1196–202.
CAS
PubMed
PubMed Central
Google Scholar
Karunakaran K, Noguchi Y, Read T, Cherkasov A, Kwee J, Shen C, Nelson C, Brunham R. Molecular analysis of the multiple GroEL proteins of Chlamydiae,. J Bacteriol. 2003; 185(6):1958–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross W, Vrentas C, Sanchez-Vazquez P, Gaál T, Gourse R. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell. 2013; 50(3):420–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacquier N, Viollier P, Greub G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev. 2015; 39:262–75. 2.
Article
CAS
PubMed
Google Scholar
Liechti G, Kuru E, Packiam M, Hsu Y, Tekkam S, Hall E, Rittichier J, VanNieuwenhze M, Brun Y, Maurelli A. Pathogenic Chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, regulated by MreB, for cell division. PLoS Pathog. 2016; 12(5):1005590.
Article
CAS
Google Scholar
Goldstein J, Pollitt N, Inouye M. Major cold shock protein of Escherichia coli. Proc Natl Acad Sci. 1990; 87(1):283–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doniger J, Landsman D, Gonda M, Wistow G. The product of Unr, the highly conserved gene upstream of N-Ras, contains multiple repeats similar to the cold-shock domain (CSD), a putative DNA-binding motif. New Biol. 1992; 4(4):389–95.
CAS
PubMed
Google Scholar
Read T, Myers G, Brunham R, Nelson W, Paulsen I, Heidelberg J, Holtzapple E, Khouri H, Federova N, Carty H, Umayam L, Haft D, Peterson J, Beanan M, White O, Salzberg S, Hsia R, McClarty G, Rank R, Bavoil P, Fraser C. Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae,. Nucleic Acids Res. 2003; 31(8):2134–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sait M, Livingstone M, Clark E, Wheelhouse N, Spalding L, Markey B, Magnino S, Lainson F, Myers G, Longbottom D. Genome sequencing and comparative analysis of three Chlamydia pecorum strains associated with different pathogenic outcomes. BMC Genomics. 2014; 15:23.
Article
PubMed
PubMed Central
Google Scholar
Giles T, Fisher D, E Graham D. Independent inactivation of arginine decarboxylase genes by nonsense and missense mutations led to pseudogene formation in Chlamydia trachomatis serovar l2 and d strains. BMC Evol Biol. 2009; 9:166. https://doi.org/10.1186/1471-2148-9-166.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wehrl W, Brinkmann V, Jungblut P, Meyer T, Szczepek A. From the inside out–processing of the chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells. Molecular Microbiology. 2004; 51(2):319–34.
Article
CAS
PubMed
Google Scholar
Wheelhouse N, Sait M, Wilson K, Aitchison K, McLean K, Smith D, Longbottom D. Expression patterns of five polymorphic membrane proteins during the Chlamydia abortus developmental cycle. Vet Microbiol. 2012; 160:252–9.
Article
CAS
Google Scholar
Pedersen A, Christiansen G, Birkelund S. Differential expression of Pmp10 in cell culture infected with Chlamydia pneumoniae CWL029,. FEMS Microbiol Lett. 2001; 203(2):153–9.
Article
CAS
PubMed
Google Scholar
Oomen C, van Ulsen P, van Gelder P, Feijen M, Tommassen J, Gros P. Structure of the translocator domain of a bacterial autotransporter. EMBO J. 2004; 23(6):1257–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nunes A, Gomes J, Karunakaran K, Brunham R, Ojcius D. Bioinformatic analysis of Chlamydia trachomatis polymorphic membrane proteins PmpE, PmpF, PmpG and PmpH as potential vaccine antigens. PloS ONE. 2015; 10(7):0131695.
Article
CAS
Google Scholar
Kari L, Southern T, Downey C, Watkins H, Randall L, Taylor L, Sturdevant G, Whitmire W, Caldwell H. Chlamydia trachomatis polymorphic membrane protein D is a virulence factor involved in early host-cell interactions. Infect Immun. 2014; 82(7):2756–62.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tan C, Hsia R, Shou H, Carrasco J, Rank R, Bavoil P. Variable expression of surface-exposed polymorphic membrane proteins in in vitro-grown Chlamydia trachomatis,. Cell Microbiol. 2010; 12(2):174–87.
Article
CAS
PubMed
Google Scholar
Heinz E, Tischler P, Rattei T, Myers G, Wagner M, Horn M. Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae. BMC Genomics. 2009; 10:634.
Article
PubMed
CAS
PubMed Central
Google Scholar
Heinz E, Rockey D, Montanaro J, Aistleitner K, Wagner M, Horn M. Inclusion membrane proteins of Protochlamydia amoebophila UWE25 reveal a conserved mechanism for host cell interaction among the Chlamydiae,. J Bacteriol. 2010; 192:5093–102. 19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mital J, Miller N, Fischer E, Hackstadt T. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Cell Microbiol. 2010; 12(9):1235–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponting C, Kerr I. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Sci. 1996; 5(5):914–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coutinho-Silva R, Stahl L, Raymond M, Jungas T, Verbeke P, Burnstock G, Darville T, Ojcius D. Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity. 2003; 19(3):403–12.
Article
CAS
PubMed
Google Scholar
McNally D, Fares M. In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evol Biol. 2007; 7:81.
Article
PubMed
CAS
PubMed Central
Google Scholar
Grimwoodg J, Stephens R. Computational analysis of the polymorphic membrane protein superfamily of Chlamydia trachomatis and Chlamydia pneumoniae. Microb Comp Genomics. 1999; 4(3):187–201.
Article
Google Scholar
Henderson I, Owen P, Nataro J. Molecular switches — the ON and OFF of bacterial phase variation. Mol Microbiol. 1999; 33:919–32.
Article
CAS
PubMed
Google Scholar
Bochkareva O, Moroz E, Davydov I, Gelfand M. Genome rearrangements and selection in multi-chromosome bacteria Burkholderia spp. BMC Genomics. 2018; 19:965. https://doi.org/10.1186/s12864-018-5245-1.
Mira A, Pushker R, Rodriguez-Valera F. The neolithic revolution of bacterial genomes. TRENDS Microbiol. 2006; 14(5):200–6.
Article
CAS
PubMed
Google Scholar
Benson D, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt K, Sayers E. Genbank. Nucleic Acids Res. 2018; 45(D1):41–7.
Article
CAS
Google Scholar
Jeffrey B, Suchland R, Eriksen S, Sandoz K, Rockey D. Genomic and phenotypic characterization of in vitro-generated Chlamydia trachomatis recombinants. BMC Microbiol. 2013; 13:142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer A, Harrison KS, Ramirez Y, Auer D, Chowdhury SR, Prusty BK, Sauer F, Dimond Z, Kisker C, Hefty PS, Rudel T. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize mcl-1 and to interfere with host defense. eLife. 2017; 6:21465. https://doi.org/10.1186/s12864-018-5245-1.
Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. J Mol Biol. 1990; 215(3):403–10.
Article
CAS
PubMed
Google Scholar
R Eddy S. Accelerated profile HMM searches. PLoS Computat Biol. 2011; 7:1002195. https://doi.org/10.1371/journal.pcbi.1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M, Meyer F, Olsen G, Olson R, Osterman A, Overbeek R, McNeil L, Paarmann D, Paczian T, Parrello B, Pusch G, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008; 9:75.
Article
PubMed
CAS
PubMed Central
Google Scholar
van Belkum A, Scherer S, van Alphen L, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev. 1998; 62(2):275–93.
CAS
PubMed
PubMed Central
Google Scholar
Ranwez V, Harispe S, Delsuc F, Douzery E. Macse: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PloS One. 2011; 6(9):22594.
Article
CAS
Google Scholar
N Price M, S Dehal P, Arkin A. FastTree 2 – approximately maximum-likelihood trees for large alignments. PloS ONE. 2010; 5:9490. https://doi.org/10.1371/journal.pone.0009490.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016; 33:1635–8. https://doi.org/10.1093/molbev/msw046.
Article
CAS
PubMed
PubMed Central
Google Scholar
E Darling A, Mau B, Perna N. Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PloS one. 2010; 5:11147. https://doi.org/10.1371/journal.pone.0011147.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pham S, Pevzner P. DRIMM-Synteny: decomposing genomes into evolutionary conserved segments. Bioinformatics. 2010; 26:2509–16.
Article
CAS
PubMed
Google Scholar
Hu F, Lin Y, Tang J. MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinforma. 2014; 15:354.
Article
Google Scholar
Avdeyev P, Jiang S, Aganezov S, Hu F, Alekseyev M. Reconstruction of ancestral genomes in presence of gene gain and loss. J Comput Biology. 2016; 23(3):150–164.
Article
CAS
Google Scholar
Zhang Z, Li J, Zhao X, Wang J, Wong G, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinforma. 2006; 4(4):259–263.
Article
CAS
Google Scholar
Jukes T, Cantor C. Evolution of protein molecules. New York: Academic Press; 1969, pp. 21–132. Chap. 24. http://dx.doi.org/10.1016/B978-1-4832-3211-9.50009-7.
Chapter
Google Scholar
Edgar R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016; 44(Web Server issue):W242–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donati C, Hiller N, Tettelin H, Muzzi A, Croucher N, Angiuoli S, Oggioni M, Dunning Hotopp J, Hu F, Riley D, Covacci A, Mitchell T, Bentley S, Kilian M, Ehrlich G, Rappuoli R, Moxon E, Masignani V. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol. 2010; 11(10):107.
Article
CAS
Google Scholar