Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012; 10(8):538.
Article
CAS
PubMed
Google Scholar
Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012; 13(6):42.
Article
CAS
Google Scholar
Sung J, Hale V, Merkel AC, Kim P-J, Chia N. Metabolic modeling with big data and the gut microbiome. Appl Transl Genom. 2016; 10:10–15.
Article
PubMed
PubMed Central
Google Scholar
Eun CS, Kwak M-J, Han DS, Lee AR, Park DI, Yang S-K, Kim YS, Kim JF. Does the intestinal microbial community of korean crohn’s disease patients differ from that of western patients?. BMC Gastroenterol. 2016; 16(1):28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, Martinez X, Varela E, Sarrabayrouse G, Machiels K, et al. A microbial signature for Crohn’s disease. Gut. 2017; 66(5):813–822.
Article
CAS
PubMed
Google Scholar
Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016; 14(1):20.
Article
CAS
PubMed
Google Scholar
Douglas GM, Hansen R, Jones CM, Dunn KA, Comeau AM, Bielawski JP, Tayler R, El-Omar EM, Russell RK, Hold GL, et al. Multi-omics differentially classify disease state and treatment outcome in pediatric crohn’s disease. Microbiome. 2018; 6(1):13.
Article
PubMed
PubMed Central
Google Scholar
Dalal SR, Chang EB. The microbial basis of inflammatory bowel diseases. J Clin Investig. 2014; 124(10):4190–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee A, Chettri B, Langpoklakpam JS, Basak P, Prasad A, Mukherjee AK, Bhattacharyya M, Singh AK, Chattopadhyay D. Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci Rep. 2017; 7(1):1108.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015; 11(5):1004226.
Article
CAS
Google Scholar
Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012; 8(7):1002606.
Article
CAS
Google Scholar
Faust K, Raes J. Conet app: inference of biological association networks using cytoscape. F1000Research. 2016; 5. https://doi.org/10.12688/f1000research.9050.2.
Article
PubMed
PubMed Central
Google Scholar
Xu Z, Hansen MA, Hansen LH, Jacquiod S, Sørensen SJ. Bioinformatic approaches reveal metagenomic characterization of soil microbial community. PLoS ONE. 2014; 9(4):93445.
Article
CAS
Google Scholar
Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, et al. Predictive functional profiling of microbial communities using 16s rrna marker gene sequences. Nat Biotechnol. 2013; 31(9):814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Thapa I, Lu G, Zhu L, Ali HH. A systems biology approach for modeling microbiomes using split graphs. In: Bioinformatics and Biomedicine (BIBM), 2017 IEEE International Conference On. IEEE: 2017. p. 2062–8. https://doi.org/10.1109/bibm.2017.8217978.
Li W, Chen J. Endomorphism-regularity of split graphs. Eur J Comb. 2001; 22(2):207–16.
Article
CAS
Google Scholar
Hammer PL, Földes S. Split graphs. Congressus Numerantium. 1977; 19:311–315.
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7(5):335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knights D, Silverberg MS, Weersma RK, Gevers D, Dijkstra G, Huang H, Tyler AD, Van Sommeren S, Imhann F, Stempak JM, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014; 6(12):107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Momozawa Y, Deffontaine V, Louis E, Medrano JF. Characterization of bacteria in biopsies of colon and stools by high throughput sequencing of the v2 region of bacterial 16s rrna gene in human. PLoS ONE. 2011; 6(2):16952.
Article
CAS
Google Scholar
Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, et al. The treatment-naive microbiome in new-onset crohn’s disease. Cell Host Microbe. 2014; 15(3):382–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 2017; 25(3):217–28.
Article
CAS
PubMed
Google Scholar
Häsler R, Sheibani-Tezerji R, Sinha A, Barann M, Rehman A, Esser D, Aden K, Knecht C, Brandt B, Nikolaus S, et al. Uncoupling of mucosal gene regulation, mrna splicing and adherent microbiota signatures in inflammatory bowel disease. Gut. 2017; 66(12):2087–97.
Article
PubMed
CAS
Google Scholar
Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci. 2007; 104(34):13780–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaubeck M, Clavel T, Calasan J, Lagkouvardos I, Haange SB, Jehmlich N, Basic M, Dupont A, Hornef M, Von Bergen M, et al. Dysbiotic gut microbiota causes transmissible crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut. 2015:2015. https://doi.org/10.1136/gutjnl-2015-309333.
Article
PubMed
Google Scholar
Nabatov AA. The vesicle-associated function of nod2 as a link between crohn’s disease and mycobacterial infection. Gut Pathog. 2015; 7(1):1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henry J-P, Sagné C, Bedet C, Gasnier B. The vesiicular monoamine transporter: from chromaffin granule to brain. Neurochem Int. 1998; 32(3):227–246.
Article
CAS
PubMed
Google Scholar
Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012; 13(9):79.
Article
CAS
Google Scholar
Thiele I, Heinken A, Fleming RM. A systems biology approach to studying the role of microbes in human health. Curr Opin Biotechnol. 2013; 24(1):4–12.
Article
CAS
PubMed
Google Scholar
Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, De Vos M, Boon N, Van de Wiele T. Butyrate-producing bacteria supplemented in vitro to crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep. 2017; 7(1):11450.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. In: Seminars in immunopathology. Berlin: Springer: 2015. p. 47–55.
Google Scholar
Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson ID, Wang Y. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007; 6(2):546–51.
Article
CAS
PubMed
Google Scholar
Onderdonk A, Franklin M, Cisneros R. Production of experimental ulcerative colitis in gnotobiotic guinea pigs with simplified microflora. Infect Immun. 1981; 32(1):225–31.
CAS
PubMed
PubMed Central
Google Scholar
Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE, Balish E, Taurog JD, Hammer RE, Wilson KH, Sartor RB. Normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis, and arthritis in hla-b27/human beta2 microglobulin transgenic rats. J Clin Inv. 1996; 98(4):945–53.
Article
CAS
Google Scholar
Weiss TS, Herfarth H, Obermeier F, Ouart J, Vogl D, Schölmerich J, Jauch K. -W., Rogler G. Intracellular polyamine levels of intestinal epithelial cells in inflammatory bowel disease. Inflamm Bowel Dis. 2004; 10(5):529–35.
Article
CAS
PubMed
Google Scholar
Thompson JS, Edney JA, Laughlin K. Urinary polyamines in colorectal cancer. Dis Colon Rectum. 1986; 29(12):873–7.
Article
CAS
PubMed
Google Scholar
Peulen O, Deloyer P, Deville C, Dandrifosse G. Polyamines in gut inflammation and allergy. Curr Med Chem-Anti-Inflamm Anti-Allergy Agents. 2004; 3(1):1–8.
Article
CAS
Google Scholar
Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, Brostoff J, Parkhill J, Dougan G, Petrovska L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011; 11(1):7.
Article
PubMed
PubMed Central
Google Scholar
Alhagamhmad MH, Day AS, Lemberg DA, Leach ST. An overview of the bacterial contribution to crohn disease pathogenesis. J Med Microbiol. 2016; 65(10):1049–59.
Article
CAS
PubMed
Google Scholar
Keshavarzian A, Banan A, Farhadi A, Komanduri S, Mutlu E, Zhang Y, Fields J. Increases in free radicals and cytoskeletal protein oxidation and nitration in the colon of patients with inflammatory bowel disease. Gut. 2003; 52(5):720–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danese S, Sgambato A, Papa A, Scaldaferri F, Pola R, Sans M, Lovecchio M, Gasbarrini G, Cittadini A, Gasbarrini A. Homocysteine triggers mucosal microvascular activation in inflammatory bowel disease. Am J Gastroenterol. 2005; 100(4):886.
Article
CAS
PubMed
Google Scholar