Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 2010;61:1029–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marrocco K, Bergdoll M, Achard P, Criqui MC, Genschik P. Selective proteolysis sets the tempo of the cell cycle. Curr Opin Plant Biol. 2010;13:631–9.
Article
CAS
PubMed
Google Scholar
Shu K, Yang W. E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. Plant Cell Physiol. 2017;58:1461–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin-proteasome system: central modifier of plant signaling. New Phytol. 2013;196:13–28.
Article
CAS
Google Scholar
Banfield MJ. Perturbation of host ubiquitin systems by plant pathogen/pest effector proteins. Cell Microbiol. 2015;17:18–25.
Article
CAS
PubMed
Google Scholar
Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol. 2009;10:385–97.
Article
CAS
PubMed
Google Scholar
Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science. 2006;311:222–6.
Article
CAS
PubMed
Google Scholar
Singer AU. Schulze, Skarina T, Xu X, Cui H, Eschen-Lippold L et al. a pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS. Pathology. 2013;9:e1003121.
CAS
Google Scholar
Park C, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern–triggered immunity in Rice. Plant Cell. 2012;24:4748–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kud J, Wang W, Gross R, Fan Y, Huang L, Yuan Y, et al. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathog. 2019;15:e1007720.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, et al. Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. J Proteome Res. 2011;10:1505–18.
Article
CAS
PubMed
Google Scholar
Zhao C, Escalante LN, Chen H, Benatti TR, Qu J, Chellapilla S, et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr Biol. 2015;25:613–20.
Article
CAS
PubMed
Google Scholar
Serrano M, Socorro P, Alcaraz LD, Guzman P. The ATL gene family from Arabidopsis thaliana and Oryza sativa comprises a large number of putative ubiquitin ligases of the RING-H2 type. J Mol Evol. 2006;62:434–45.
Article
CAS
PubMed
Google Scholar
Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, Tsschaplinski TJ, et al. The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol. 2008;148:1189–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffares DC, Penkett CJ, Bahler J. Rapidly regulated genes are intron poor. Trends Genet. 2008;24:375–8.
Article
CAS
PubMed
Google Scholar
Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434.
Article
CAS
PubMed
Google Scholar
Nakamura N. The role of the transmembrane RING finger proteins in cellular and organelle function. Membranes. 2011;1:354–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yaeno T, Iba Y. BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. Plant Physiol. 2008;148:1032–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ariani P, Regaiolo A, Lovato A, Giorgetti A, Porcedu A, Camiolo S, et al. Genome-wide characterization and expression profile of the grapevine ATL ubiquitin ligase family reveal biotic and abiotic stress-responsive and development-related members. Sci Rep. 2016;6:38260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pauwels L, Ritter A, Goossens J, Durand AN, Liu H, Gu Y, et al. The RING E3 ligase KEEP ON GOING modulates JASMONATE ZIM-DOMAIN 12 stability. Plant Physiol. 2015;169:1405–17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ali MRM, Uemura T, Ramadan A, Adachi K, Nemoto K, Nozawa A, et al. The ring-type E3 ubiquitin ligase JUL1 targets the VQ-motif protein JAV1 to coordinate jasmonate signaling. Plant Physiol. 2019;179:1273–84.
Article
CAS
PubMed
Google Scholar
Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell. 2009;137:860–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N, et al. Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. Plant J. 2013;73:302–13.
Article
CAS
PubMed
Google Scholar
Bos JIB, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet. 2010;6:e1001216.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kettles GJ, Kaloshian I. The potato aphid salivary effector Me47 is a glutathione-S-transferase involved in modifying plant responses to aphid infestation. Front Plant Sci. 2016;7:1142.
PubMed
PubMed Central
Google Scholar
Chen C, Liu YQ, Song WM, Chen DY, Chen FY, Chen XY, et al. An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci U S A. 2019;116:14331–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu HX, Qian LX, Wang XW, Shao RX, Hong Y, Liu SS, et al. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc Natl Acad Sci U S A. 2019;116:490–5.
Article
CAS
PubMed
Google Scholar
Wool D, Aloni R, Ben-Zvi O, Wollberg M. A galling aphid furnishes its home with a built-in pipeline to the host food supply. Entomol Exp Appl. 1999;91:183–6.
Article
Google Scholar
Sandstrom J, Telang A, Moran NA. Nutritional enhancement of host plants by aphids – a comparison of three aphid species on grasses. J Insect Physiol. 2010;46:33–40.
Article
Google Scholar
Nyman T, Julkunen-Tiitto R. Manipulation of phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci. 2000;97:13184–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stone GN, Schonrogge K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 2003;18:512–22.
Article
Google Scholar
Allison SD, Schultz JC. Biochemical responses of chestnut oak to a galling cynipid. J Chem Ecol. 2005;31:151.
Article
CAS
PubMed
Google Scholar
Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH. Leaf-galling phylloxera on grapes reprogram host metabolism and morphology. Proc Natl Acad Sci U S A. 2013;110:16663–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giron D, Huguet E, Stone GN, Body M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host plant. J Insect Physiol. 2016;84:70–89.
Article
CAS
PubMed
Google Scholar
Nabity PD. Insect-induced plant phenotypes: revealing mechanisms through comparative genomics of galling insects and their hosts. Am J Bot. 2016;103:979–81.
Article
PubMed
Google Scholar
Tooker JF, Helms AM. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J Chem Ecol. 2014;40:742–53.
Article
CAS
PubMed
Google Scholar
Al-Jbory Z, El-Bouhssini M, Chen MS. Conserved and unique putative effectors expressed in the salivary glands of three related gall midge species. J Insect Sci. 2018;18:15.
Article
PubMed Central
Google Scholar
Rispe C, Legeai F, Papura D, Bretaudeau A, Hudaverdian S, Trionnaire GL, et al. De novo transcriptome assembly of the grapevine phylloxera allows identification of genes differentially expressed between leaf-and root-feeding forms. BMC Genomics. 2016;17:219.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao C, Nabity PD. Plant manipulation through gall formation constrains amino acid transporter evolution in sap-feeding insects. BMC Evol Biol. 2017;17:153.
Article
PubMed
PubMed Central
CAS
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;gkr367:W29–W37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, et al. Web Apollo: a web-based genomic annotation editing platform. Genome Biol. 2013;R93.
Armenteros JJA, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420.
Article
CAS
PubMed
Google Scholar
Hashimoto M, Murata E, Aoki T. Secretory protein with RING finger domain (SPRING) specific to Trypanosoma cruzi is directed, as a ubiquitin ligase related protein, to the nucleus of host cells. Cell Microbiol. 2010;12:19–30.
Article
CAS
PubMed
Google Scholar
Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Google Scholar
Backman TWH, Girke T. systemPipeR: NGS workflow and report generation environment. BMC Bioinformatics. 2016;17(1).
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz JC, Edger PP, Body MJA, Appel HM. A galling insect activates plant reproductive programs during gall development. Sci Rep. 2019;9:1833.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sterling C. Ontogeny of the phylloxera gall of grape leaf. Am J Bot. 1952;39:6–15.
Article
Google Scholar
Aravind L, Koonin EV. The U box is a modified RING finger—a common domain in ubiquitination. Curr Biol. 2000;10:R132–4.
Article
CAS
PubMed
Google Scholar
Oates C, Denby K, Myburg A, Slippers B, Naidoo S. Insect gallers and their plant hosts: from omics data to systems biology. Int J Mol Sci. 2016;17:1891.
Article
PubMed Central
CAS
Google Scholar
Villarroel CA, Jonckheere W, Alba JM, Glass JJ, Dermauw W, Haring MA, et al. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. Plant J. 2016;86:119–31.
Article
CAS
PubMed
Google Scholar
Chen MS, Liu X, Yang Z, Zhao H, Shukle RH, Stuart JJ, et al. Unusual conservation among genes encoding small secreted salivary gland proteins from a gall midge. BMC Evol Biol. 2010;10:296.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hughes AL. Gene duplication and the origin of novel proteins. Proc Natl Acad Sci U S A. 2005;102:8791–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao C, Shukle R, Navarro-Escalante L, Chen M, Richards S, Stuart JJ. Avirulence gene mapping in the hessian fly (Mayetiola destructor) reveals a protein phosphatase 2C effector gene family. J Insect Physiol. 2016;84:22–31.
Article
CAS
PubMed
Google Scholar
Boulain H, Legeai F, Guy E, Morliere S, Douglas NE, Oh J, et al. Fast evolution and lineage-specific gene family expansions of aphid salivary effectors driven by interactions with host-plants. Genome Biol Evol. 2018;10:1554–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorpe P, Cock PJ, Bos J. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genomics. 2016;17:172.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aggarwal R, Subramanyam S, Zhao C, Chen MS, Harris MO, Stuart JJ. Avirulence effector discovery in a plant galling and plant parasitic arthropod, the hessian fly (Mayetiola destructor). PLoS One. 2014;9:e100958.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matsumoto Y, Suetsugu Y, Nakamura M, Hattori M. Transcriptome analysis of the salivary glands of Nephotettix cincticeps (Uhler). J Insect Physiol. 2014;71:170–6.
Article
CAS
PubMed
Google Scholar
Ying M, Huang X, Zhao H, Wu Y, Wan F, Huang C, et al. Comprehensively surveying structure and function of RING domains from Drosophila melanogaster. PLoS One. 2011;6:e23863.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miao YT, Deng Y, Jia HK, Liu YD, Hou ML. Proteomic analysis of watery saliva secreted by white-backed planthopper, Sogatella furcifera. PLoS One. 2018;13:e0193831.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tasaki T, Mulder LC, Iwamatsu A, Lee MJ, Davydov IV, Varshavsky A, et al. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol. 2005;25:7120–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desgagne-Penix I, Eakanunkul S, Coles JP, Phillips AL, Hedden P, Sponsel VM. The auxin transport inhibitor response 3 (tir3) allele of BIG and auxin transport inhibitors affect the gibberellin status of Arabidopsis. Plant J. 2005;41:231–41.
Article
CAS
PubMed
Google Scholar
Metzger MB, Pruneda JN, Klevit RE, Weissman AM. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochimica Biophysica Acta (BBA)-molecular. Cell Res. 2014;1843:47–60.
CAS
Google Scholar
Budhidarmo R, Nakatani Y, Day CL. RINGs hold the key to ubiquitin transfer. Trends Biochem Sci. 2012;37:58–65.
Article
CAS
PubMed
Google Scholar
Huang H, Jedynak BM, Bader JS. Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comp Biol. 2007;3:e214.
Article
CAS
Google Scholar
Zhu J, Lee BH, Dellinger M, Cui X, Zhang C, Wu S, et al. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J. 2010;63:128–40.
CAS
PubMed
PubMed Central
Google Scholar
Lau OS, Davies KA, Chang J, Adrian J, Rowe MH, Ballenger CE, et al. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Science. 2014;345:1605–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu F, Bringmann M, Combs JR, Yang J, Bergmann D, Nielsen E. Arabidopsis CSLD5 functions in cell plate formation in a cell cycle-dependent manner. Plant Cell. 2016;28:1722–37.
CAS
PubMed
PubMed Central
Google Scholar
Saucet SB, Ma Y, Sarris PF, Furzer OJ, Sohn KH, Jones JD. Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nat Commun. 2015;6:6338.
Article
CAS
PubMed
Google Scholar
Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, et al. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J. 2009;60:218–26.
Article
CAS
PubMed
Google Scholar
Jwa NS, Hwang BK. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front Plant Sci. 2017;8:1687.
Article
PubMed
PubMed Central
Google Scholar
Alcaide-Loridan C, Jupin I. Ubiquitin and plant viruses, let’s play together! Plant Physiol. 2012;160:72–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chronis D, Chen S, Lu S, Hewezi T, Carpenter SC, Loria R, et al. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant J. 2013;74:185–96.
Article
CAS
PubMed
Google Scholar
Ashida H, Sasakawa C. Bacterial E3 ligase effectors exploit host ubiquitin systems. Curr Opin Microbiol. 2017;35:16–22.
Article
CAS
PubMed
Google Scholar