Mazumdar P, Singh P, Babu S, Siva R, Harikrishna JA. An update on biological advancement of Jatropha curcas L.: new insight and challenges. Renew Sust Energ Rev. 2018;91:903–17.
Article
Google Scholar
Giwa A, Adeyemi I, Dindi A, Lopez CG-B, Lopresto CG, Curcio S, Chakraborty S. Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: a review and case study. Renew Sust Energ Rev. 2018;88:239–57.
Article
CAS
Google Scholar
Laviola BG, Rodrigues EV, Teodoro PE, Peixoto LA, Bhering LL. Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production. Renew Sust Energ Rev. 2017;76:894–904.
Article
CAS
Google Scholar
Moniruzzaman M, Yaakob Z, Khatun R. Biotechnology for Jatropha improvement: a worthy exploration. Renew Sust Energ Rev. 2016;54:1262–77.
Article
CAS
Google Scholar
Montes JM, Melchinger AE. Domestication and breeding of Jatropha curcas L. Trends Plant Sci. 2016;21(12):1045–57.
Article
CAS
PubMed
Google Scholar
Abdelgadir HA, Van Staden J. Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review. S Afr J Bot. 2013;88:204–18.
Article
CAS
Google Scholar
Maghuly F, Laimer M. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol J. 2013;8(10):1172–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
King AJ, He W, Cuevas JA, Freudenberger M, Ramiaramanana D, Graham IA. Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot. 2009;60(10):2897–905.
Article
CAS
PubMed
Google Scholar
Islam AKMA, Yaakob Z, Anuar N. Jatropha: a multipurpose plant with considerable potential for the tropics. Sci Res Essays. 2011;6(13):2597–605.
Google Scholar
Ong HC, Mahlia TMI, Masjuki HH, Norhasyima RS. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew Sust Energ Rev. 2011;15(8):3501–15.
Article
CAS
Google Scholar
Kumar A, Sharma S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crop Prod. 2008;28(1):1–10.
Article
CAS
Google Scholar
Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N. Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci. 2008;174(6):613–7.
Article
CAS
Google Scholar
Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, et al. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 2011;18(1):65–76.
Article
CAS
PubMed
Google Scholar
Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Watanabe A, Yamada M, Aizu T, et al. Upgraded genomic information of Jatropha curcas L. Plant Biotechnol. 2012;29(2):123–30.
Article
CAS
Google Scholar
Wu P, Zhou C, Cheng S, Wu Z, Lu W, Han J, Chen Y, Chen Y, Ni P, Wang Y, et al. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J. 2015;81(5):810–21.
Article
CAS
PubMed
Google Scholar
Ha J, Shim S, Lee T, Kang YJ, Hwang WJ, Jeong H, Laosatit K, Lee J, Kim SK, Satyawan D, et al. Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits. Plant Biotechnol J. 2019;17(2):517–30.
Article
CAS
PubMed
Google Scholar
Kancharla N, Jalali S, Narasimham JV, Nair V, Yepuri V, Thakkar B, Reddy VB, Kuriakose B, N, S A M. De Novo Sequencing and Hybrid Assembly of the Biofuel Crop Jatropha curcas L.: Identification of Quantitative Trait Loci for Geminivirus Resistance. Genes (Basel). 2019;10(1):96.
Qin X, Zheng X, Huang X, Lii Y, Shao C, Xu Y, Chen F. A novel transcription factor JcNAC1 response to stress in new model woody plant Jatropha curcas. Planta. 2014;239(2):511–20.
Article
CAS
PubMed
Google Scholar
Ma Y, Yin Z, Ye J. Lipid biosynthesis and regulation in Jatropha, an emerging model for woody energy plants; 2017. p. 113–27.
Google Scholar
Tsuchimoto S, editor. The Jatropha genome: Volume 1st ed. 2017. Osaka University: Springer Japan; 2017.
Fresnedo-Ramirez J. The floral biology of Jatropha curcas L.-a review. Trop Plant Biol. 2013;6(1):1–15.
Article
Google Scholar
Chen MS, Pan BZ, Fu Q, Tao YB, Martinez-Herrera J, Niu L, Ni J, Dong Y, Zhao ML, Xu ZF. Comparative transcriptome analysis between gynoecious and monoecious plants identifies regulatory networks controlling sex determination in Jatropha curcas. Front Plant Sci. 2016;7:1953.
PubMed
Google Scholar
Jiang H, Wu P, Zhang S, Song C, Chen Y, Li M, Jia Y, Fang X, Chen F, Wu G. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One. 2012;7(5):e36522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Zou Z, Wang S, Gong M. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. PLoS One. 2013;8(12):e82817.
Article
PubMed
PubMed Central
CAS
Google Scholar
Juntawong P, Sirikhachornkit A, Pimjan R, Sonthirod C, Sangsrakru D, Yoocha T, Tangphatsornruang S, Srinives P. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling. Front Plant Sci. 2014;5:658.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Zhang C, Wu P, Chen Y, Li M, Jiang H, Wu G. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS One. 2014;9(5):e97878.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang C, Zhang L, Zhang S, Zhu S, Wu P, Chen Y, Li M, Jiang H, Wu G. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress. BMC Plant Biol. 2015;15:17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sapeta H, Lourenco T, Lorenz S, Grumaz C, Kirstahler P, Barros PM, Costa JM, Sohn K, Oliveira MM. Transcriptomics and physiological analyses reveal co-ordinated alteration of metabolic pathways in Jatropha curcas drought tolerance. J Exp Bot. 2016;67(3):845–60.
Article
CAS
PubMed
Google Scholar
Ni J, Gao C, Chen MS, Pan BZ, Ye K, Xu ZF. Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas. Plant Cell Physiol. 2015;56(8):1655–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan BZ, Chen MS, Ni J, Xu ZF. Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genomics. 2014;15:974.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang M, Wu Y, Jin S, Hou J, Mao Y, Liu W, Shen Y, Wu L. Flower bud transcriptome analysis of Sapium sebiferum (Linn.) Roxb. and primary investigation of drought induced flowering: pathway construction and G-quadruplex prediction based on transcriptome. PLoS One. 2015;10(3):e0118479.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sakurai N, Ogata Y, Ara T, Sano R, Akimoto N, Hiruta A, Suzuki H, Kajikawa M, Widyastuti U, Suharsono S, et al. Development of KaPPA-View4 for omics studies on Jatropha and a database system KaPPA-loader for construction of local omics databases. Plant Biotechnol. 2012;29(2):131–5.
Article
CAS
Google Scholar
Leinonen R, Sugawara H, Shumway M. International nucleotide sequence database C: the sequence read archive. Nucleic Acids Res. 2011;39(Database issue):D19–21.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(Web Server issue):W345–9.
Article
PubMed
PubMed Central
Google Scholar
Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(Database issue):D222–30.
Article
CAS
PubMed
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(Web Server issue):W182–5.
Article
PubMed
PubMed Central
Google Scholar
Yi X, Zhang Z, Ling Y, Xu W, Su Z. PNRD: a plant non-coding RNA database. Nucleic Acids Res. 2015;43(Database issue):D982–9.
Article
CAS
PubMed
Google Scholar
Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010;11:94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arabidopsis Interactome Mapping C. Evidence for network evolution in an Arabidopsis interactome map. Science. 2011;333(6042):601–7.
Article
CAS
Google Scholar
Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT, et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science. 2011;333(6042):596–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones AM, Xuan Y, Xu M, Wang RS, Ho CH, Lalonde S, You CH, Sardi MI, Parsa SA, Smith-Valle E, et al. Border control--a membrane-linked interactome of Arabidopsis. Science. 2014;344(6185):711–6.
Article
CAS
PubMed
Google Scholar
Li P, Zang W, Li Y, Xu F, Wang J, Shi T. AtPID: the overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis. Nucleic Acids Res. 2011;39(Database issue):D1130–3.
Article
CAS
PubMed
Google Scholar
Brandao MM, Dantas LL, Silva-Filho MC. AtPIN: Arabidopsis thaliana protein interaction network. BMC Bioinformatics. 2009;10:454.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin M, Shen X, Chen X. PAIR: the predicted Arabidopsis interactome resource. Nucleic Acids Res. 2011;39(Database issue):D1134–40.
Article
CAS
PubMed
Google Scholar
Poole RL. The TAIR database. Methods Mol Biol. 2007;406:179–212.
CAS
PubMed
Google Scholar
Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, Frings O, Sonnhammer EL. InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 2010;38(Database issue):D196–203.
Article
PubMed
CAS
Google Scholar
Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, Goodstein DM, Elsik CG, Lewis SE, Stein L, et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 2016;17:66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deng W, Nickle DC, Learn GH, Maust B, Mullins JI. ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics. 2007;23(17):2334–6.
Article
CAS
PubMed
Google Scholar
Heijmans K, Morel P, Vandenbussche M. MADS-box genes and floral development: the dark side. J Exp Bot. 2012;63(15):5397–404.
Article
CAS
PubMed
Google Scholar
Matsumoto N, Okada K. A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Genes Dev. 2001;15(24):3355–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoyama Y, Kobayashi S, Kidou S-i. PHD type zinc finger protein PFP represses flowering by modulating FLC expression in Arabidopsis thaliana. Plant Growth Regul. 2019;88:49.