Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9.
Article
CAS
PubMed
Google Scholar
Felix G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 1999;18:265–76.
Article
CAS
PubMed
Google Scholar
Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature. 2001;410:1099–103.
Article
CAS
PubMed
Google Scholar
Shibuya N, Minami E. Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol. 2001;59:223–33.
Article
CAS
Google Scholar
Gómez-Gómez L, Boller T. FLS2: an LRR receptor–like kinase involved in the perception of the bacterial elicitor Flagellin in Arabidopsis. Mol Cell. 2000;5:1003–11.
Article
PubMed
Google Scholar
Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A. 2006;103:11086–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104:19613–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nürnberger T, Brunner F. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol. 2002;5:318–24.
Article
PubMed
Google Scholar
Newman M-A, Sundelin T, Nielsen JT, Erbs G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci. 2013;4:139.
Article
PubMed
PubMed Central
Google Scholar
Petre B, Kamoun S. How do filamentous pathogens deliver effector proteins into plant cells? PLoS Biol. 2014;12:e1001801.
Article
PubMed
PubMed Central
CAS
Google Scholar
Selin C, de Kievit TR, Belmonte MF, Fernando WGD. Elucidating the role of effectors in plant-fungal interactions: Progress and challenges. Front Microbiol. 2016;7:600.
Article
PubMed
PubMed Central
Google Scholar
Roelfs AP. Effects of barberry eradication on stem rust in the United States. Plant Dis. 1982;66:177.
Article
Google Scholar
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–32.
Article
CAS
PubMed
Google Scholar
Schumann GL, Leonard KJ. Stem rust of wheat (black rust). Plant Heal Instr. 2000. https://doi.org/10.1094/PHI-I-2000-0721-01.
Dodds PN, Rafiqi M, Gan PHP, Hardham AR, Jones DA, Ellis JG. Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytol. 2009;183:993–1000.
Article
PubMed
Google Scholar
Eckardt NA. The Arabidopsis RPW8 resistance protein is recruited to the Extrahaustorial membrane of biotrophic powdery mildew Fungi. Plant Cell. 2009;21:2543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobon A, Bunting DCE, Cabrera-Quio LE, Uauy C, Saunders DGO. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics. 2016;17:380.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rutter WB, Salcedo A, Akhunova A, He F, Wang S, Liang H, et al. Divergent and convergent modes of interaction between wheat and Puccinia graminis f sp tritici isolates revealed by the comparative gene co-expression network and genome analyses. BMC Genomics. 2017;18:291.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xia C, Wang M, Cornejo OE, Jiwan DA, See DR, Chen X. Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f sp tritici. Front Microbiol. 2017;8:2394.
Article
PubMed
PubMed Central
Google Scholar
Fofana B, Banks TW, McCallum B, Strelkov SE, Cloutier S. Temporal gene expression profiling of the wheat leaf rust pathosystem using cDNA microarray reveals differences in compatible and incompatible defence pathways. Int J Plant Genomics. 2007;2007:17542.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duplessis S, Hacquard S, Delaruelle C, Tisserant E, Frey P, Martin F, et al. Melampsora larici-populina transcript profiling during germination and Timecourse infection of poplar leaves reveals dynamic expression patterns associated with virulence and biotrophy. Mol Plant-Microbe Interact. 2011;24:808–18.
Article
CAS
PubMed
Google Scholar
Chen M, Cao Z. Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-Populina. BMC Genomics. 2015;16:696.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu X, Kracher B, Saur IML, Bauer S, Ellwood SR, Wise R, et al. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proc Natl Acad Sci U S A. 2016;113:E6486–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steffenson BJ. Analysis of durable resistance to stem rust in barley. Euphytica. 1992;63:153–67.
Article
Google Scholar
Roelfs AP. Epidemiology of the cereal rusts in North America. Can J Plant Pathol. 1989;11:86–90.
Article
Google Scholar
Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2008;92:923–6.
Article
CAS
PubMed
Google Scholar
Pretorius ZA, Singh RP, Wagoire WW, Payne TS. Detection of Virulence to Wheat Stem Rust Resistance Gene Sr31 in Puccinia graminis . f. sp. tritici in Uganda. Plant Dis. 2000;84:203.
Article
CAS
PubMed
Google Scholar
Jin Y, Steffenson B, Miller J. Inheritance of resistance to Pathotypes QCC and MCC of Puccinia graminis f. sp. tritici in barley line Q21861 and temperature effects on the expression of resistance. Phytopathology. 1994;84:452.
Article
Google Scholar
Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, et al. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci. 2008;105:14970–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steffenson BJ, Jin Y, Brueggeman RS, Kleinhofs A, Sun Y. Resistance to stem rust race TTKSK maps to the rpg4 / Rpg5 complex of chromosome 5H of barley. Phytopathology. 2009;99:1135–41.
Article
CAS
PubMed
Google Scholar
Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, et al. The rpg4 -Mediated Resistance to Wheat Stem Rust ( Puccinia graminis ) in Barley ( Hordeum vulgare ) Requires Rpg5 , a Second NBS-LRR Gene, and an Actin Depolymerization Factor. Mol Plant-Microbe Interact. 2013;26:407–18.
Article
CAS
PubMed
Google Scholar
Arora D, Gross T, Brueggeman R. Allele characterization of genes required for rpg4- mediated wheat stem rust resistance identifies Rpg5 as the R gene. Phytopathology. 2013;103:1153–61.
Article
CAS
PubMed
Google Scholar
Sharma Poudel R, Al-Hashel AF, Gross T, Gross P, Brueggeman R. Pyramiding rpg4- and Rpg1-mediated stem rust resistance in barley requires the Rrr1 gene for both to function. Front Plant Sci. 2018;9:1789.
Article
PubMed
PubMed Central
Google Scholar
Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, et al. Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina. DNA Res. 2010;17:211–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruce M, Neugebauer KA, Joly DL, Migeon P, Cuomo CA, Wang S, et al. Using transcription of six Puccinia triticina races to identify the effective secretome during infection of wheat. Front Plant Sci. 2014;4:520.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F, Bouton C, et al. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science. 2017;358:1607–10.
Article
CAS
PubMed
Google Scholar
Dodds PN, Lawrence GJ, Catanzariti A-M, Ayliffe MA, Ellis JG. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell. 2004;16:755–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salcedo A, Rutter W, Wang S, Akhunova A, Bolus S, Chao S, et al. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science. 2017;358:1604–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duplessis S, Cuomo CA, Lin Y-C, Aerts A, Tisserant E, Veneault-Fourrey C, et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A. 2011;108:9166–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
https://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/puccinia-comparative-genomic-projects.
Jelenska J, van Hal JA, Greenberg JT. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci U S A. 2010;107:13177–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed AA, Pedersen C, Schultz-Larsen T, Kwaaitaal M, Jørgensen HJL, Thordal-Christensen H. The barley powdery mildew candidate secreted effector protein CSEP0105 inhibits the chaperone activity of a small heat shock protein. Plant Physiol. 2015;168:321–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saunders DGO, Win J, Cano LM, Szabo LJ, Kamoun S, Raffaele S. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust Fungi. PLoS One. 2012;7:e29847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorrain C, Hecker A, Duplessis S. Effector-Mining in the Poplar Rust Fungus Melampsora larici-Populina Secretome. Front Plant Sci. 2015;6:1051.
Article
PubMed
PubMed Central
Google Scholar
Sonah H, Deshmukh RK, Bélanger RR. Computational prediction of effector proteins in Fungi: opportunities and challenges. Front Plant Sci. 2016;7:126.
PubMed
PubMed Central
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17:122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Flor HH. Inheritance of reaction to rust in flax. J Agric Res. 1947;74:241–62.
Google Scholar
Sun Y, Steffenson BJ. Reaction of barley seedlings with different stem rust resistance genes to Puccinia graminis f. sp. tritici and Puccinia graminis f. sp. secalis. Can J Plant Pathol. 2005;27:80–9.
Article
Google Scholar
Roelfs AP, Casper D, Long D, Roberts J. Races of Puccinia graminis in the United States in 1989. Plant Dis. 1991;75:1127.
Article
Google Scholar
Roelfs AP, McCallum B, McVey DV, Groth JV. Comparison of virulence and Isozyme phenotypes of Rrr1-QCCJ and Great Plains races of Puccinia graminis f. sp. tritici. Phytopathology. 1997;87:910–4.
Article
CAS
PubMed
Google Scholar
de Meeûs T, Balloux F. Clonal reproduction and linkage disequilibrium in diploids: a simulation study. Infect Genet Evol. 2004;4:345–51.
Article
PubMed
Google Scholar
Nirmala J, Dahl S, Steffenson BJ, Kannangara CG, von Wettstein D, Chen X, et al. Proteolysis of the barley receptor-like protein kinase RPG1 by a proteasome pathway is correlated with Rpg1-mediated stem rust resistance. Proc Natl Acad Sci U S A. 2007;104:10276–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roelfs AP. Genetic control of phenotypes in wheat stem rust. Annu Rev Phytopathol. 1988;26:351–67.
Article
Google Scholar
Bourras S, McNally KE, Ben-David R, Parlange F, Roffler S, Praz CR, et al. Multiple Avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. Plant Cell. 2015;27:2991–3012.
CAS
PubMed
PubMed Central
Google Scholar
Bourras S, McNally KE, Müller MC, Wicker T, Keller B. Avirulence genes in cereal powdery mildews: the gene-for-gene hypothesis 2.0. Front. Plant Sci. 2016;7:241.
Google Scholar
Ellis JG, Dodds PN, Lawrence GJ. Flax rust resistance gene specificity is based on direct resistance-Avirulence protein interactions. Annu Rev Phytopathol. 2007;45:289–306.
Article
CAS
PubMed
Google Scholar
Yuan C, Wang M, Skinner DZ, See DR, Xia C, Guo X, et al. Inheritance of virulence, construction of a linkage map, and mapping dominant virulence genes in Puccinia striiformis f. sp. tritici through characterization of a sexual population with genotyping-by-sequencing. Phytopathology. 2018;108:133–41.
Article
CAS
PubMed
Google Scholar
Solanki S. Dissecting the mystery behind the Rpg5 mediated Puccinia graminis resistance in barley using genetics, Molecular and Bioinformatics Approaches. North Dakota State University; 2017.
Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol. 2007;145:1588–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garofalo CG, Garavaglia BS, Dunger G, Gottig N, Orellano EG, Ottado J. Expression Analysis of Small Heat Shock Proteins During Compatible and Incompatible Plant-Pathogen Interactions. 2009.
Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, et al. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol. 2003;4:383–91.
Article
CAS
PubMed
Google Scholar
Lee J-H, Yun HS, Kwon C. Molecular communications between plant heat shock responses and disease resistance. Mol Cells. 2012;34:109–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park C-J, Seo Y-S. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J. 2015;31:323–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song T, Ma Z, Shen D, Li Q, Li W, Su L, et al. An Oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters. PLoS Pathog. 2015;11:e1005348.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanei-Ishii C, Yasukawa T, Morimoto RI. Ishii S c-Myb-induced trans-activation mediated by heat shock elements without sequence-specific DNA binding of c-Myb. J Biol Chem. 1994;269:15768–75.
CAS
PubMed
Google Scholar
Kanei-Ishii C, Tanikawa J, Nakai A, Morimoto RI, Ishii S. Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress. Science. 1997;277:246–8.
Article
CAS
PubMed
Google Scholar
Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. 2001;4:447–56.
Article
CAS
PubMed
Google Scholar
de Torres ZM, Littlejohn G, Jayaraman S, Studholme D, Bailey T, Lawson T, et al. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nat Plants. 2015;1:15074.
Article
CAS
Google Scholar
Telfer A, Cammack R, Evans MCW. Hydrogen peroxide as the product of autoxidation of ferredoxin: reduced either chemically or by illuminated chloroplasts. FEBS Lett. 1970;10:21–4.
Article
CAS
PubMed
Google Scholar
RUMEAU D, PELTIER G, COURNAC L. Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ. 2007;30:1041–51.
Article
CAS
PubMed
Google Scholar
Sarris PF, Cevik V, Dagdas G, Jones JDG, Krasileva KV. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 2016;14:8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kroj T, Chanclud E, Michel-Romiti C, Grand X, Morel J-B. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 2016;210:618–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy― hypothesis. Front Plant Sci. 2014;5:606.
Article
PubMed
PubMed Central
Google Scholar
Bailey PC, Schudoma C, Jackson W, Baggs E, Dagdas G, Haerty W, et al. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol. 2018;19:23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A. 2002;99:9328–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stakman EC, Stewart DM, Loegering WQ. Identification of physiologic races of Puccinia 4 graminis var. tritici. 1962. https://naldc.nal.usda.gov/download/CAT10243018/PDF. .
Miller JD, Lambert JW. Variability and inheritance of reaction of barley to race 15B of stem Rust1. Agron J. 1955;47:373.
Article
Google Scholar
Leboldus JM, Kinzer K, Richards J, Ya Z, Yan C, Friesen TL, et al. Genotype-by-sequencing of the plant-pathogenic fungi Pyrenophora teres and Sphaerulina musiva utilizing ion torrent sequence technology. Mol Plant Pathol. 2015;16:623–32.
Article
CAS
PubMed
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM; 2013.
Google Scholar
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. In: Current protocols in bioinformatics. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013. p. 11.10.1–11.10.33.
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
PASA. https://github.com/PASApipeline/PASApipeline/wik.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
https://webblast.ipk-gatersleben.de/barley_ibsc/.
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
https://www.ebi.ac.uk/Tools/ hmmer/search/hmmscan.
Madden T. The BLAST Sequence Analysis Tool. In: The NCBI Handbook. Ed. 2. National Center for Biotechnology Information (US); 2013.
Araport11. https://www.araport.org/ data/araport11.
Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–7.
Article
CAS
PubMed
Google Scholar
Alexa A, Rahnenfuhrer J. topGO: Enrichment analysis for Gene Ontology. R Packag version 2220. 2010.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
http://broadinstitute.github.io/picard.
http://fungi.ensembl.org/Puccinia_graminis.
Zhou H, Steffenson BJ, Muehlbauer G, Wanyera R, Njau P, Ndeda S. Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theor Appl Genet. 2014;127:1293–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petre B, Joly DL, Duplessis S. Effector proteins of rust fungi. Front Plant Sci. 2014;5:416.
PubMed
PubMed Central
Google Scholar
Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Mol Plant Pathol. 2018;19:2094–110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.
Article
CAS
PubMed
Google Scholar