Li HP, Yang WJ, Qu SX, Pei F, Luo X, Mariga AM, Ma L. Variation of volatile terpenes in the edible fungi mycelia Flammulina velutipes and communications in fungus-mite interactions. Food Res Int. 2018;103:150–5.
Article
CAS
PubMed
Google Scholar
Cai H, Liu X, Chen Z, Liao S, Zou Y. Isolation, purification and identification of nine chemical compounds from Flammulina velutipes fruiting bodies. Food Chem. 2013;141(3):2873–9.
Article
CAS
PubMed
Google Scholar
Liu JY, Chang MC, Meng JL, Feng CP, Zhao H, Zhang ML. Comparative proteome reveals metabolic changes during the fruiting process in Flammulina velutipes. J Agric Food Chem. 2017;65(24):5091–100.
Article
CAS
PubMed
Google Scholar
Smiderle FR, Carbonero ER, Sassaki GL, Gorin PAJ, Iacomini M. Characterization of a heterogalactan: some nutritional values of the edible mushroom Flammulina velutipes. Food Chem. 2008;108(1):329–33.
Article
CAS
Google Scholar
Park YJ, Baek JH, Lee S, Kim C, Rhee H, Kim H, et al. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One. 2014;9(4):e93560.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chang YC, Hsiao YM, Wu MF, Ou CC, Lin YW, Lue KH, Ko JL. Interruption of lung cancer cell migration and proliferation by fungal immunomodulatory protein FIP-fve from Flammulina velutipes. J Agric Food Chem. 2013;61(49):12044–52.
Article
CAS
PubMed
Google Scholar
El Enshasy HA, Hatti-Kaul R. Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol. 2013;31(12):668–77.
Article
PubMed
CAS
Google Scholar
Xiao H, Zhong JJ. Production of useful terpenoids by higher-fungus cell factory and synthetic biology approaches. Trends Biotechnol. 2016;34(3):242–55.
Article
CAS
PubMed
Google Scholar
Shao S, Hernandez M, Kramer JK, Rinker DL, Tsao R. Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J Agric Food Chem. 2010;58(22):11616–25.
Article
CAS
PubMed
Google Scholar
Yi C, Zhong H, Tong S, Cao X, Firempong CK, Liu H, et al. Enhanced oral bioavailability of a sterol-loaded microemulsion formulation of Flammulina velutipes, a potential antitumor drug. Int J Nanomedicine. 2012;7:5067–78.
CAS
PubMed
PubMed Central
Google Scholar
Tong S, Zhong H, Yi C, Cao X, Firempong CK, Zheng Q, Feng Y, Yu J, Xu X. Simultaneous HPLC determination of ergosterol and 22,23-dihydroergosterol in Flammulina velutipes sterol-loaded microemulsion. Biomed Chromatogr. 2014;28(2):247–54.
Article
CAS
PubMed
Google Scholar
Yi C, Sun C, Tong S, Cao X, Feng Y, Firempong CK, Jiang X, Xu X, Yu J. Cytotoxic effect of novel Flammulina velutipes sterols and its oral bioavailability via mixed micellar nanoformulation. Int J Pharm. 2013;448(1):44–50.
Article
CAS
PubMed
Google Scholar
Phillips KM, Ruggio DM, Horst RL, Minor B, Simon RR, Feeney MJ, Byrdwell WC, Haytowitz DB. Vitamin D and sterol composition of 10 types of mushrooms from retail suppliers in the United States. J Agric Food Chem. 2011;59(14):7841–53.
Article
CAS
PubMed
Google Scholar
Jasinghe VJ, Perera CO. Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chem. 2005;92(3):541–6.
Article
CAS
Google Scholar
Ma L, Chen H, Dong P, Lu X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013;139(1–4):503–8.
Article
CAS
PubMed
Google Scholar
Palmie-Peixoto IV, Rocha MR, Urbina JA, de Souza W, Einicker-Lamas M, Motta MC. Effects of sterol biosynthesis inhibitors on endosymbiont-bearing trypanosomatids. FEMS Microbiol Lett. 2006;255(1):33–42.
Article
CAS
PubMed
Google Scholar
Rhee YH, Jeong SJ, Lee HJ, Lee HJ, Koh W, Jung JH, Kim SH, Sung-Hoon K. Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells. BMC Cancer. 2012;12:28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pluchino LA, Liu AK, Wang HC. Reactive oxygen species-mediated breast cell carcinogenesis enhanced by multiple carcinogens and intervened by dietary ergosterol and mimosine. Free Radic Biol Med. 2015;80:12–26.
Article
CAS
PubMed
Google Scholar
Ma BX, Ke X, Tang XL, Zheng RC, Zheng YG. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3beta-ol accumulation by metabolic engineering. World J Microbiol Biotechnol. 2018;34(4):55.
Article
PubMed
CAS
Google Scholar
Souza CM, Schwabe TM, Pichler H, Ploier B, Leitner E, Guan XL, Wenk MR, Riezman I, Riezman H. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab Eng. 2011;13(5):555–69.
Article
CAS
PubMed
Google Scholar
Zhang K, Tong M, Gao K, Di Y, Wang P, Zhang C, Wu X, Zheng D. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2015;42(2):207–18.
Article
PubMed
CAS
Google Scholar
Yuan J, Ching CB. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microb Cell Factories. 2015;14:38.
Article
CAS
Google Scholar
Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B. Recent advances in Ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J Microbiol. 2017;57(3):270–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Layer JV, Barnes BM, Yamasaki Y, Barbuch R, Li L, Taramino S, Balliano G, Bard M. Characterization of a mutation that results in independence of oxidosqualene cyclase (Erg7) activity from the downstream 3-ketoreductase (Erg27) in the yeast ergosterol biosynthetic pathway. Biochim Biophys Acta. 2013;1831(2):361–9.
Article
CAS
PubMed
Google Scholar
Long N, Xu X, Zeng Q, Sang H, Lu L. Erg4A and Erg4B Are Required for Conidiation and Azole Resistance via Regulation of Ergosterol Biosynthesis in Aspergillus fumigatus. Appl Environ Microbiol. 2017;83(4):e02924-16. https://doi.org/10.1128/AEM.02924-16.
Wriessnegger T, Pichler H. Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation. Prog Lipid Res. 2013;52(3):277–93.
Article
CAS
PubMed
Google Scholar
Nahlik J, Hrncirik P, Mares J, Rychtera M, Kent CA. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts. Biotechnol Prog. 2017;33(3):838–48.
Article
CAS
PubMed
Google Scholar
Szymanski J, Brotman Y, Willmitzer L, Cuadros-Inostroza A. Linking gene expression and membrane lipid composition of Arabidopsis. Plant Cell. 2014;26(3):915–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun. 2012;3:913.
Article
PubMed
CAS
Google Scholar
Hsu HH, Araki M, Mochizuki M, Hori Y, Murata M, Kahar P, Yoshida T, Hasunuma T, Kondo A. A systematic approach to time-series metabolite profiling and RNA-seq analysis of Chinese hamster ovary cell culture. Sci Rep. 2017;7:43518.
Article
PubMed
PubMed Central
Google Scholar
Guillon F, Philippe S, Bouchet B, Devaux MF, Frasse P, Jones B, Bouzayen M, Lahaye M. Down-regulation of an Auxin response factor in the tomato induces modification of fine pectin structure and tissue architecture. J Exp Bot. 2008;59(2):273–88.
Article
CAS
PubMed
Google Scholar
Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, et al. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol. 2006;142(4):1380–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrari F, Fernie AR. Metabolic regulation underlying tomato fruit development. J Exp Bot. 2006;57(9):1883–97.
Article
CAS
PubMed
Google Scholar
Dimster-Denk D, Rine J. Transcriptional regulation of a sterol-biosynthetic enzyme by sterol levels in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16(8):3981–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veen M, Stahl U, Lang C. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res. 2003;4(1):87–95.
Article
CAS
PubMed
Google Scholar
Cardoza RE, Vizcaino JA, Hermosa MR, Sousa S, Gonzalez FJ, Llobell A, Monte E, Gutierrez S. Cloning and characterization of the erg1 gene of Trichoderma harzianum: effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genet Biol. 2006;43(3):164–78.
Article
CAS
PubMed
Google Scholar
Ploier B, Korber M, Schmidt C, Koch B, Leitner E, Daum G. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2015;1851(7):977–86.
Article
CAS
PubMed
Google Scholar
Gachotte D, Barbuch R, Gaylor J, Nickel E, Bard M. Characterization of the Saccharomyces cerevisiae ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) involved in sterol biosynthesis. Proc Natl Acad Sci U S A. 1998;95(23):13794–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swain E, Baudry K, Stukey J, McDonough V, Germann M, Nickels JT Jr. Sterol-dependent regulation of sphingolipid metabolism in Saccharomyces cerevisiae. J Biol Chem. 2002;277(29):26177–84.
Article
CAS
PubMed
Google Scholar
Hatoh K, Izumitsu K, Morita A, Shimizu K, Ohta A, Kawai M, et al. Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an agrobacterium-mediated method using a universal transformation plasmid. Mycoscience. 2013;54(1):8–12.
Article
CAS
Google Scholar
Cho JH, Lee SE, Chang WB, Cha JS. Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes. Mycobiology. 2006;34(2):104–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghodasara A, Voigt CA. Balancing gene expression without library construction via a reusable sRNA pool. Nucleic Acids Res. 2017;45(13):8116–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Tong J, Lee CW, Ha S, Eom SH, Im YJ. Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nat Commun. 2015;6:6129.
Article
CAS
PubMed
Google Scholar
Dunkel N, Liu TT, Barker KS, Homayouni R, Morschhauser J, Rogers PD. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot Cell. 2008;7(7):1180–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacPherson S, Akache B, Weber S, De Deken X, Raymond M, Turcotte B. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother. 2005;49(5):1745–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou P, Xie W, Li A, Wang F, Yao Z, Bian Q, Zhu Y, Yu H, Ye L. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Enzym Microb Technol. 2017;100:28–36.
Article
CAS
Google Scholar
Yin Y, Yu G, Chen Y, Jiang S, Wang M, Jin Y, Lan X, Liang Y, Sun H. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS One. 2012;7(12):e51853.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu JY, Men JL, Chang MC, Feng CP, Yuan LG. iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J Proteome. 2017;156:75–84.
Article
CAS
Google Scholar
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33(20):6494–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25(11):1422–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 2008;36(Database issue):D250–4.
CAS
PubMed
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Yun YH, Koo JS, Kim SH, Kong WS. Cloning and expression analysis of phenylalanine ammonia-lyase gene in the mycelium and fruit body of the edible mushroom Flammulina velutipes. Mycobiology. 2015;43(3):327–32.
Article
PubMed
PubMed Central
Google Scholar
Huang JF, Shen ZY, Mao QL, Zhang XM, Zhang B, Wu JS, Liu ZQ, Zheng YG. Systematic analysis of bottlenecks in a multibranched and multilevel regulated pathway: the molecular fundamentals of l-methionine biosynthesis in Escherichia coli. ACS Synth Biol. 2018;7(11):2577–89.
Article
CAS
PubMed
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.
Article
CAS
PubMed
Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34(2):374–8.
Article
CAS
PubMed
Google Scholar