Vega FE. Insect pathology and fungal endophytes. J Invertebr Pathol. 2008;98(3):277–9.
Article
PubMed
Google Scholar
Boomsma JJ, Jensen AB, Meyling NV, Eilenberg J. Evolutionary interaction networks of insect pathogenic fungi. Annu Rev Entomol. 2014;59(1):467–85.
Article
CAS
PubMed
Google Scholar
Yanhua F, Dov B, Chloe H, Almudena OU, Keyhani NO. Exploiting host molecules to augment mycoinsecticide virulence. Nat Biotechnol. 2012;30(1):35.
Article
CAS
Google Scholar
Yanhua F, Pereira RM, Engin K, George C, Keyhani NO. Pyrokinin β-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of β-NP in a mycoinsecticide increases its virulence. PLoS One. 2012;7(1):e26924.
Article
CAS
Google Scholar
Li ZZ, Alves SB, Roberts DW, Fan MZ, Delalibera Júnior I, Jian T, et al. Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Sci Tech. 2010;20(2):117–36.
Article
Google Scholar
Uma Devi K, Padmavathi J, Uma Maheswara Rao C, AAP K, MCJBS M. A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Sci Tech. 2008;18(10):975–89.
Article
Google Scholar
Ortiz-Urquiza A, Keyhani N. Molecular genetics of Beauveria bassiana infection of insects. Adv Genet. 2016;94:165–249.
Wraight SP, Ramos ME, Avery PB, Jaronski ST, Vandenberg JD. Comparative virulence of Beauveria bassiana isolates against lepidopteran pests of vegetable crops. J Invertebr Pathol. 2010;103(3):186–99.
Article
CAS
PubMed
Google Scholar
Song T-T, Feng M-G. In vivo passages of heterologous Beauveria bassiana isolates improve conidial surface properties and pathogenicity to Nilaparvata lugens (Homoptera: Delphacidae). J Invertebr Pathol. 2011;106(2):211–6.
Article
CAS
PubMed
Google Scholar
Wilkening S, Tekkedil MM, Lin G, Fritsch ES, Wei W, Gagneur J, et al. Genotyping 1000 yeast strains by next-generation sequencing. BMC Genomics. 2013;14(1):90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mburu DM, Maniania NK, Hassanali A. Comparison of volatile blends and nucleotide sequences of two Beauveria bassiana isolates of different virulence and repellency towards the termite Macrotermes michealseni. J Chem Ecol. 2013;39(1):101–8.
Article
CAS
PubMed
Google Scholar
Valero-Jiménez CA, Faino L, Veld DSIT, Smit S, Zwaan BJ, Kan JALV. Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes. BMC Genomics. 2016;17(1):986.
Article
PubMed
PubMed Central
CAS
Google Scholar
Laurent B, Moinard M, Spataro C, Ponts N, Barreau C, Foulongne-Oriol M. Landscape of genomic diversity and host adaptation in fusarium graminearum. BMC Genomics. 2017;18(1):203.
Article
PubMed
PubMed Central
Google Scholar
Atwell S, Corwin JA, Soltis NE, Subedy A, Denby KJ, Kliebenstein DJ. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front Microbiol. 2015;6:966.
Article
Google Scholar
Wang S, Leclerque A, Pava-Ripoll M, Fang W. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae. Eukaryot Cell. 2009;8(6):888–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep. 2012;2(483):483.
Article
PubMed
PubMed Central
CAS
Google Scholar
Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor M, Ogden R, Limborg M, et al. Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour. 2011;11:123–36.
Article
PubMed
Google Scholar
Valero-Jiménez CA, Faino L, Spring D, Smit S, Zwaan BJ, van Kan JA. Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes. BMC Genomics. 2016;17(1):986.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet. 2013;14(2):125.
Article
CAS
PubMed
Google Scholar
Grigoriev IV, Martinez DA, Salamov AA. Fungal genomic annotation. Appl Mycol Biotechnol. 2006;6(06):123–42.
Article
CAS
Google Scholar
O’Hanlon KA, Cairns T, Stack D, Schrettl M, Bignell EM, Kavanagh K, et al. Targeted disruption of nonribosomal peptide synthetase pes3 augments the virulence of aspergillus fumigatus. Infect Immun. 2011;79(10):3978–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arrebola E, Cazorla FM, Romero D, Pérez-García A, de Vicente A. A nonribosomal peptide synthetase gene (mgoA) of pseudomonas syringae pv. Syringae is involved in mangotoxin biosynthesis and is required for full virulence. Mol Plant-Microbe Interact. 2007;20(5):500–9.
Article
CAS
PubMed
Google Scholar
Cramer RA, Gamcsik MP, Brooking RM, Najvar LK, Kirkpatrick WR, Patterson TF, et al. Disruption of a nonribosomal peptide synthetase in aspergillus fumigatus eliminates gliotoxin production. Eukaryot Cell. 2006;5(6):972–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan Y, Liu X, Keyhani NO, Tang G, Pei Y, Zhang W, et al. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proc Natl Acad Sci U S A. 2017;114(9):E1578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghikas DV, Kouvelis VN, Typas MA. Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1–5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol. 2010;10(1):174.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meyling NV, Lübeck M, Buckley EP, Eilenberg J, Rehner SA. Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Mol Ecol. 2009;18(6):1282–93.
Article
CAS
PubMed
Google Scholar
Rehner SA, Posada F, Buckley EP, Infante F, Castillo A, Vega FE. Phylogenetic origins of African and Neotropical Beauveria bassiana s.l. pathogens of the coffee berry borer, Hypothenemus hampei. J Invertebr Pathol. 2006;93(1):11–21.
Article
PubMed
Google Scholar
Hideo G, Nobuhiko O, Gi KY, Kouya S, Naoko H, Takeshi H, et al. Extracellular secretion of the virulence plasmid-encoded ADP-ribosyltransferase SpvB in salmonella. Microb Pathog. 2003;34(5):227–38.
Article
CAS
Google Scholar
Rosa JLD, Kaufman PD. Chromatin-mediated Candida albicans virulence ☆. BBA - Gene Regul Mech. 2012;1819(3–4):349–55.
Google Scholar
Rottner K, Stradal TE, Wehland J. Bacteria-host-cell interactions at the plasma membrane: stories on actin cytoskeleton subversion. Dev Cell. 2005;9(1):3–17.
Article
CAS
PubMed
Google Scholar
Dionisio G, Kryger P, Steenberg T. Label-free differential proteomics and quantification of exoenzymes from isolates of the entomopathogenic fungus Beauveria bassiana. Insects. 2016;7(4):54.
Article
PubMed Central
Google Scholar
Weiguo F, Bo L, Yuehua X, Kai J, Jincheng M, Yanhua F, et al. Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol. 2005;71(1):363–70.
Article
CAS
Google Scholar
Parish T, Smith DA, Kendall S, Casali N, Bancroft GJ, Stoker NG. Deletion of two-component regulatory systems increases the virulence of mycobacterium tuberculosis. Infect Immun. 2003;71(3):1134–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller SI, Kukral AM, Mekalanos JJ. A two-component regulatory system (phoP phoQ) controls salmonella typhimurium virulence. Proc Natl Acad Sci U S A. 1989;86(13):5054–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beier D, Gross R. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol. 2006;9(2):143–52.
Article
CAS
PubMed
Google Scholar
Gooderham W, Hancock R. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev. 2010;33(2):279–94.
Article
CAS
Google Scholar
Zahrt TC, Buchmeier N, Maloy SJI. Immunity: effect of mutS and recD mutations on salmonella virulence. Infect Immun. 1999;67(11):6168–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voth DE, Howe D, Beare PA, Vogel JP, Unsworth N, Samuel JE, et al. The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence dot/Icm-mediated secretion. J Bacteriol. 2009;191(13):4232–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Junan L, Anjali M, Ming-Daw T. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry. 2006;45(51):15168–78.
Article
CAS
Google Scholar
Lamb SA, Rahman MM, McFadden GJV. Recombinant myxoma virus lacking all poxvirus ankyrin-repeat proteins stimulates multiple cellular anti-viral pathways and exhibits a severe decrease in virulence. Virology. 2014;464:134–45.
Article
PubMed
CAS
Google Scholar
Pullen KE, Ng HL, Sung PY, Good MC, Smith SM, Alber T. An alternate conformation and a third metal in PstP/Ppp, the M. tuberculosis PP2C-family Ser/Thr protein phosphatase. Structure. 2004;12(11):1947–54.
Article
CAS
PubMed
Google Scholar
Wehenkel A, Bellinzoni M, Graña M, Duran R, Villarino A, Fernandez P, et al. Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. BBA - Proteins Proteomic. 2008;1784(1):193–202.
Article
CAS
Google Scholar
Goodwin SB, Drenth A, Fry WE. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Curr Genet. 1992;22(2):107–15.
Article
CAS
PubMed
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, vol. 1303; 2013.
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6(2):80–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam-Tung N, Schmidt HA, Arndt VH, MBJMB Q. Evolution: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;1:1.
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Leong HW. Bidirectional best hit r -window gene clusters. Bmc Bioinformatics. 2010;11(Suppl 1):1–9.
CAS
Google Scholar
Ana C, Stefan GT, Juan Miguel GG, Javier T, Manuel T, Montserrat R. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto Encyclopaedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2013;42(D1):D222–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen K, Wallis JW, Mclellan MD, Larson DE, Kalicki JM, Pohl CS, et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6(9):677–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England). 1998;14(9):755–63.
Article
CAS
Google Scholar