Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64.
CAS
PubMed
PubMed Central
Google Scholar
Amadou I, Gounga ME, Le GW. Millets: nutritional composition, some health benefits and processing - a review. Emir J Food Agri. 2013;25(7):501–8.
Google Scholar
Begun DJ, Aquadro CF. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. 1992, Nature;356(6369):519–20 Available at https://doi.org/10.1038/356519a0.
Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM, Johnson JM, Muttoni G, Vaillancourt B, Buell CR, Kaeppler SM, de Leon N. Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics. 2013;193(4):1073 LP – 1081 Available at http://www.genetics.org/content/193/4/1073.abstract.
CAS
PubMed
PubMed Central
Google Scholar
Bevan MW, Uauy C. Genomics reveals new landscapes for crop improvement. Genome Biol. 2013;14(6):206.
PubMed
PubMed Central
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
CAS
PubMed
Google Scholar
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2007;81(5):1084–97 Available at https://doi.org/10.1086/521987.
CAS
PubMed
PubMed Central
Google Scholar
Burgarella C, Cubry P, Kane NA, Varshney RK, Mariac C, Liu X, Shi C, Thudi M, Couderc M, Xu X, Chitikineni A, Scarcelli N, Barnaud A, Rhoné B, Dupuy C, François O, Berthouly-Salazar C, Vigouroux Y. A western Sahara Centre of domestication inferred from pearl millet genomes. Nat Ecol Evol. 2018;2:1377–80.
PubMed
Google Scholar
Cortázar-Chinarro M, Lattenkamp EZ, Meyer-Lucht Y, Luquet E, Laurila A, Höglund J. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian. BMC Evol. Biol. 2017;17(1):189 Available at https://www.ncbi.nlm.nih.gov/pubmed/28806900.
PubMed
PubMed Central
Google Scholar
Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23(13):3133–57.
PubMed
Google Scholar
Cutter AD, Payseur BA. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 2013;14(4):262–74 Available at https://doi.org/10.1038/nrg3425.
CAS
PubMed
PubMed Central
Google Scholar
Dave, H.R. 1987. Pearl millet hybrids. p. 121–126. In Witcombe, J.R., Beckerman, S.R. (eds.), proceedings of the international pearl millet workshop. ICRISAT, Patancheru, a.P. 502 324, India.
Diack O, Kane NA, Berthouly-Salazar C, Gueye MC, Diop BM, Fofana A, Sy O, Tall H, Zekraoui L, Piquet M, Couderc M, Vigouroux Y, Diouf D, Barnaud A. New genetic insights into pearl millet diversity as revealed by characterization of early- and late-flowering landraces from Senegal. Front Plant Sci. 2017;8:1–9.
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.
CAS
PubMed
PubMed Central
Google Scholar
Flowers JM, Molina J, Rubinstein S, Huang P, Schaal BA, Purugganan MD. Natural selection in gene-dense regions shapes the genomic pattern of polymorphism in wild and domesticated Rice. Mol. Biol. Evol. 2011;29(2):675–87 Available at https://doi.org/10.1093/molbev/msr225.
PubMed
Google Scholar
Gosset CC, Bierne N. Differential introgression from a sister species explains high FST outlier loci within a mussel species. J Evol Biol. 2013;26(1):14–26.
CAS
PubMed
Google Scholar
Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics. 1987;117(2):331 LP – 341 Available at http://www.genetics.org/content/117/2/331.abstract.
CAS
PubMed
PubMed Central
Google Scholar
Hoelzel AR, Bruford MW, Fleischer RC. Conservation of adaptive potential and functional diversity. Conserv. Genet. 2019;20(1):1–5 Available at https://doi.org/10.1007/s10592-019-01151-x.
Google Scholar
Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PVV, Morris GP. Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): comparative analysis of global accessions and Senegalese landraces. Bmc Genomics. 2015;16(1):1048.
PubMed
PubMed Central
Google Scholar
Kajuna, S.T.A.R. 2001. Millet: post-harvest operations. Food Agric. Organ. United Nations; 2001. http//www.fao.org/3/a-av009e.pdf.: 1–48.
Koch H, Frickel J, Valiadi M, Becks L. Why rapid, adaptive evolution matters for community dynamics. Front. Ecol. Evol. 2014;2:17 Available at https://www.frontiersin.org/article/10.3389/fevo.2014.00017.
Google Scholar
Krishnan R, Meera MS. Pearl millet minerals: effect of processing on bioaccessibility. J. Food Sci. Technol. 2018;55(9):3362–72 Available at https://www.ncbi.nlm.nih.gov/pubmed/30150794.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60.
CAS
PubMed
PubMed Central
Google Scholar
Linhart YB, Grant MC. Evolutionary significance of local genetic differentiation in plants. Annu. Rev. Ecol. Syst. 1996;27(1):237–77 Available at https://doi.org/10.1146/annurev.ecolsys.27.1.237.
Google Scholar
Mariac C, Luong V, Kapran I, Mamadou AA, Sagnard F, Deu M, Chantereau J, Gerard B, Ndjeunga J, Bezancon G, Pham JL, Vigouroux Y. Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor. Appl. Genet. 2006;114(1):49–58.
CAS
PubMed
Google Scholar
Mascher M, Wu S, Amand PS, Stein N, Poland J. Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS One. 2013;8(10):e76925.
CAS
PubMed
PubMed Central
Google Scholar
Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breed. 1997;3(2):87–103 Available at https://doi.org/10.1023/A:1009651919792.
CAS
Google Scholar
Passot S, Gnacko F, Moukouanga D, Lucas M, Guyomarc’h S, Ortega BM, Atkinson JA, Belko MN, Bennett MJ, Gantet P, Wells DM, Guédon Y, Vigouroux Y, Verdeil J-L, Muller B, Laplaze L. Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front Plant Sci. 2016;7(June):1–11.
Google Scholar
Pucher A, Høgh-Jensen H, Gondah J, Hash CT, Haussmann BIG. Micronutrient density and stability in west African pearl millet—potential for biofortification. Crop Sci. 2014;54(4):1709–20.
CAS
Google Scholar
Safriel, U., Z. Adeel, D. Niemeijer, J. Puigdefabregas, R. White, R. Lal, M. Winslow, J. Ziedler, S. Prince, E. Archer, C. King, B. Shapiro, K. Wessels, T. Nielsen, B. Portnov, I. Reshef, J. Thonell, E. Lachman, and D. Mcnab. 2005. Dryland Systems. Washington D. C., USA.
Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS. Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One. 2015;10(5):e0122165.
PubMed
PubMed Central
Google Scholar
Serba DD, Muleta KT, Amand PS, Bernardo A, Bai G, Perumal R, Bashir E. Genetic diversity, population structure, and linkage disequilibrium of pearl millet. The Plant Genome. 2019;12(3):1–12.
PubMed
Google Scholar
Serba DD, Yadav RS. Genomic tools in pearl millet breeding for drought tolerance: status and prospects. Front Plant Sci. 2016;7:1724.
PubMed
PubMed Central
Google Scholar
Shivhare R, Lata C. Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci. 2017;7:2069.
PubMed
PubMed Central
Google Scholar
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123(3):585–95.
CAS
PubMed
PubMed Central
Google Scholar
Taylor, J.R.N.B.T.-R.M. in F.S. 2016. Millet: pearl. In Reference Module in Food Science. Elsevier.
Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK, Chitikineni A, Fan G, Bajaj P, Punnuri S, Gupta SK, Wang H, Jiang Y, Couderc M, Katta MAVSK, Paudel DR, Mungra KD, Chen W, Harris-Shultz KR, Garg V, Desai N, Doddamani D, Kane NA, Conner JA, Ghatak A, Chaturvedi P, Subramaniam S, Yadav OP, Berthouly-Salazar C, Hamidou F, Wang J, Liang X, Clotault J, Upadhyaya HD, Cubry P, Rhoné B, Gueye MC, Sunkar R, Dupuy C, Sparvoli F, Cheng S, Mahala RS, Singh B, Yadav RS, Lyons E, Datta SK, Tom Hash C, Devos KM, Buckler E, Bennetzen JL, Paterson AH, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif JC, Liu X, Vigouroux Y, Xu X. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol. 2017;35(10):969–76.
CAS
PubMed
PubMed Central
Google Scholar
Waddington S, Li X, Dixon J, Hyman G, de Vicente MC. Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Secur. 2010;2(1):27–48.
Google Scholar
Wang C, Guo L, Li Y, Wang Z. Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Syst Biol. 2012;6(Suppl 2):S9.
PubMed
PubMed Central
Google Scholar
Weir BS. Genetic data analysis II : methods for discrete population genetic data. In: Sinauer associates, Inc. Publishers. Sunderland, Massachusetts; 1996.
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28(24):3326–8.
CAS
PubMed
PubMed Central
Google Scholar