Han WY, Li X, Ahammed GJ. Stress physiology of tea in the face of climate change; 2018.
Book
Google Scholar
Gupta S, Bharalee R, Bhorali P, Das SK, Bhagawati P, Bandyopadhyay T, Gohain B, Agarwal N, Ahmed P, Borchetia S, et al. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling. Mol Biotechnol. 2013;53(3):237–48.
Article
CAS
PubMed
Google Scholar
Das A, Das S, Mondal TK. Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol Biol Report. 2012;30(5):1088–101.
Article
CAS
Google Scholar
Wang W, Xin H, Wang M, Ma Q, Wang L, Kaleri NA, Wang Y, Li X. Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci. 2016;7:385.
PubMed
PubMed Central
Google Scholar
Liu SC, Yao M-Z, Ma C-L, Jin J-Q, Ma J-Q, Li C-F, Chen L. Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Sci Hortic. 2015;184:129–41.
Article
CAS
Google Scholar
Das A. Influence of drought stress on cellular ultrastructure and antioxidant system in tea cultivars with different drought sensitivities. J Environ Biol. 2015;36(36):875–82.
CAS
PubMed
Google Scholar
Netto LA, Jayaram KM, Puthur JT. Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency. Physiol Mol Biol Plants. 2010;16(4):359–67.
Article
PubMed
Google Scholar
Mukhopadhyay M, Mondal TK. The physico-chemical responses of Camellia to abiotic stresses. J Plant Sci Res. 2014;1:105.
Google Scholar
Muoki RC, Paul A, Kumar S. A shared response of thaumatin like protein, chitinase, andlate embryogenesis abundant protein 3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze]. Functional Integrative Genomics. 2012;12(3):565–71.
Article
CAS
PubMed
Google Scholar
Wang Y, Fan K, Wang J, Ding Z-t, Wang H, Bi C-h, Zhang Y-w, Sun H-w. Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery. J Plant Physiol. 2017;219:91–9.
Article
CAS
PubMed
Google Scholar
Gupta S, Bharalee R, Bhorali P, Bandyopadhyay T, Gohain B, Agarwal N, Ahmed P, Saikia H, Borchetia S, Kalita MC. Identification of drought tolerant progenies in tea by gene expression analysis. Functional Integrative Genomics. 2012;12(3):543–63.
Article
CAS
PubMed
Google Scholar
Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Rep. 2016;35(2):255–87.
Article
CAS
PubMed
Google Scholar
Dong L, Yuan Q, Yuan H. Changes of chemical properties of humic acids from crude and fungal transformed lignite. Fuel. 2006;85(17–18):2402–7.
Article
CAS
Google Scholar
Tate RL. Humic substances in soil and crop sciences. Soil Sci. 1991;152(3):237.
Article
Google Scholar
Wang Y, Yang R, Zheng J, Shen Z, Xu X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicology Environ Safety. 2019;167:10–9.
Article
CAS
Google Scholar
Jarošová M, Bi K, Kováčik J, Babula P, Hedbavny J. Humic acid protects barley against salinity. Acta Physiol Plant. 2006;38(6):161.
Article
CAS
Google Scholar
Dinler BS, Gunduzer E, Tekinay T. Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress. Acta Biologica Cracoviensia s Botanica. 2016;58(1):29–41.
Article
CAS
Google Scholar
Anjum SA, Wang L, Farooq M, Xue L, Ali S. Fulvic acid application improves the maize performance under well-watered and drought conditions. J Agronomy Crop Sci. 2011;197(6):409–17.
Article
CAS
Google Scholar
Lotfi R, Pessarakli M, Gharavi-Kouchebagh P, Khoshvaghti H. Physiological responses of Brassica napus to fulvic acid under water stress: chlorophyll a fluorescence and antioxidant enzyme activity. Crop J. 2015;5:434–9.
Article
Google Scholar
Bałabusta M, Szafrańska K, Posmyk MM. Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci. 2016;7:575.
Google Scholar
Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P. Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res. 2008;98(1–3):541–50.
Article
CAS
PubMed
Google Scholar
Zhang H, Zhang N, Yang R-C, Wang L, Sun Q, Li D-B, Cao Y-Y, Weeda S, Zhao B, Ren S, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res. 2014;57(3):269–79.
Article
CAS
PubMed
Google Scholar
Sharif R, Xie C, Zhang H, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz MA, Chen P, et al. Melatonin and its effects on plant systems. Molecules. 2018;23:2352.
Article
PubMed Central
CAS
Google Scholar
Conklin PL, Barth C. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ. 2004;27:959–70.
Article
CAS
Google Scholar
Ma L, Wang Y, Liu W, Liu Z. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. Biotechnol Lett. 2014;36(11):2331–41.
Article
CAS
PubMed
Google Scholar
Fotopoulos V, Sanmartin M, Kanellis AK. Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J Exp Bot. 2006;57(14):3933–43.
Article
CAS
PubMed
Google Scholar
Rituraj B, Kapil S, Sumita K, Ananda M. Transcript profiling reveals the presence of abiotic stress and developmental stage specific Ascorbate oxidase genes in plants. Front Plant Sci. 2017;8:198.
Google Scholar
Anderson JV, Davis DG. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant. 2004;120(3):421–33.
Article
CAS
PubMed
Google Scholar
Alscher RG. Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant. 1989;77(3):457–64.
Article
CAS
Google Scholar
Landi S, Nurcato R, De Lillo A, Lentini M, Grillo S, Esposito S. Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought. Plant Physiol Biochem. 2016;105:79–89.
Article
CAS
PubMed
Google Scholar
Liu J, Wang X, Hu Y, Hu W, Bi Y. Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots. Plant Cell Rep. 2013;32(3):415–29.
Article
CAS
PubMed
Google Scholar
Wagner U, Edwards R, Dixon DP, Mauch F. Probing the diversity of the Arabidopsis glutathione S-Transferase gene family. Plant Mol Biol. 2002;49:515–32.
Article
CAS
PubMed
Google Scholar
Xu J, Xiao-Juan X, Yong-Sheng T, Ri-He P, Yong X, Wei Z, Quan-Hong Y, Hong Z. Transgenic Arabidopsis plants expressing tomato glutathione S-Transferase showed enhanced resistance to salt and drought stress. PLoS One. 2015;10(9):e0136960.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74(4):418–25.
Article
CAS
PubMed
Google Scholar
Wang P, Zhang L, Jiang X, Dai X, Xia T. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. Planta. 2017;247(1):139–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen A-H, Chai Y-R, Li J-N, Chen L. Molecular cloning of two genes encoding Cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). J Biochem Mol Biol. 2007;40(2):247–60.
CAS
PubMed
Google Scholar
Rani A, Singh K, Ahuja PS, Kumar S. Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene. 2012;495(2):205–10.
Article
CAS
PubMed
Google Scholar
Bellés JM, López-Gresa MP, Fayos J, Pallás V, Rodrigo I, Conejero V. Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Sci (Oxford). 2008;174(5):524–33.
Article
CAS
Google Scholar
Wang F, Ren G, Li F, Qi S, Xu Y, Wang B, Yang Y, Ye Y, Zhou Q, Chen X. A chalcone synthase gene AeCHS from Abelmoschus esculentus regulates flavonoid accumulation and abiotic stress tolerance in transgenic Arabidopsis. Acta Physiol Plant. 2018;40(5):97.
Article
CAS
Google Scholar
Iracema B, Maria AA, Pedro R, Victor dF, Pedro M-F, Nuno M, Vítor C. Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem. 2007;55(6):2446–51.
Article
CAS
Google Scholar
Yamasaki H, SakihamaY IN. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H202. Plant Physiol. 1997;115(4):1405–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tattini M, Guidi L, Morassi-Bonzi L, Pinelli P, Remorini D, Degl’Innocenti E, Giordano C, Massai R, Agati G. On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol. 2005;167(2):457–70.
Article
CAS
PubMed
Google Scholar
Lee B-R, Kim K-Y, Jung W-J, Avice J-C, Ourry A, Kim T-H. Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot. 2007;58(6):1271–9.
Article
CAS
PubMed
Google Scholar
Kang W, Liyuan W, Chengcai Z, Liyun W, Hailin L, Fen Z, Hao C, Kumar MT. Transcriptome analysis reveals key flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes in affecting the ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis. PLoS One. 2015;10(9):e0137925.
Article
CAS
Google Scholar
Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M. Expression of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes and flavonoid composition in grape (Vitis Vinifera). Plant Sci. 2006;170(1):61–9.
Article
CAS
Google Scholar
Zhang L-Q, Wei K, Cheng H, Wang L-Y, Zhang C-C. Accumulation of catechins and expression of catechin synthetic genes in Camellia sinensis at different developmental stages. Bot Stud. 2016;57:31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol. 2005;139(2):652–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng-fei W, Xing-yan N, Yan-fu X, Mei-ying G, Tie-quan N. Spatial and temporal accumulation of Flavanols, activity and tissue localization of Leucoanthocyanidin Reductase induced by soil drought in developing grape berries. Sci Agric Sin. 2013;46(14):2979–89.
Google Scholar
Song X, Diao J, Ji J, Wang G, Guan C, Jin C, Wang Y. Molecular cloning and identification of a flavanone 3-hydroxylase gene from Lycium chinense, and its overexpression enhances drought stress in tobacco. Plant Physiol Biochem. 2016;98:89–100.
Article
CAS
PubMed
Google Scholar
Gai Z, Wang Y, Jiang J, Xie H, Ding Z, Ding S, Wang H. The quality evaluation of tea (Camellia sinensis) varieties based on the metabolomics. HortScience. 2019;54(3):409–15.
Article
Google Scholar
Guo C, Zhang M. Physiological response and molecular basis of tea plant (Camellia sinensis) exposed to water stress. Fujian: Fujian Agriculture And Forestry University; 2008.
Google Scholar
Su L, Dai Z, Li S, Xin H. A novel system for evaluating drought–cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biol. 2015;15(1):82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie X, Kang H, Liu W, Wang G-L. Comprehensive profiling of the Rice Ubiquitome reveals the significance of lysine Ubiquitination in young leaves. J Proteome Res. 2015;14(5):2017–25.
Article
CAS
PubMed
Google Scholar
Di T, Zhao L, Chen H, Qian W, Wang P, Zhang X, Xia T. Transcriptomic and metabolic insights into the distinctive effects of exogenous melatonin and gibberellin on Terpenoid synthesis and plant hormone signal transduction pathway in Camellia sinensis. J Agric Food Chem. 2019;67:4689–99.
Article
CAS
PubMed
Google Scholar
Yuan H, Zeng X, Shi J, Xu Q, Wang Y, Jabu D, Sang Z, Nyima T. Time-course comparative metabolite profiling under osmotic stress in tolerant and sensitive Tibetian hulless barley. Biomed Res Int. 2018;9415409:1–12.
Google Scholar
Wang W, Zhou Y, Wu Y, Dai X, Liu Y, Qian Y, Li M, Jiang X, Wang Y, Gao L. An insight into Catechins metabolic pathways of Camellia sinensis based on genome and Transcriptome analysis. J Agric Food Chem. 2018;66(16):4281–93.
Article
CAS
PubMed
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.
Article
CAS
PubMed
PubMed Central
Google Scholar