Burton RS, Pereira RJ, Barreto FS. Cytonuclear genomic interactions and hybrid breakdown. Annu Rev Ecol Evol Syst. 2013;44:281–302.
Google Scholar
Hill GE. Mitonuclear ecology. Mol Biol Evol. 2015;32:1917–27.
CAS
PubMed
PubMed Central
Google Scholar
Yan Z, Ye G, Werren JH. Evolutionary rate correlation between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins in insects. Mol Biol Evol. 2019;36:1022–36.
CAS
PubMed
Google Scholar
Gershoni M, Templeton AR, Mishmar D. Mitochondrial bioenergetics as a major motive force of speciation. BioEssays. 2009;31:642–50.
CAS
PubMed
Google Scholar
Chou J-Y, Leu J-Y. Speciation through cytonuclear incompatibility: insights from yeast and implications for higher eukaryotes. BioEssays. 2010;32:401–11.
CAS
PubMed
Google Scholar
Burton RS, Barreto FS. A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Mol Ecol. 2012;21:4942–57.
CAS
PubMed
Google Scholar
Hill GE. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol Evol. 2016;6:5831–42.
PubMed
PubMed Central
Google Scholar
Hill GE. The mitonuclear compatibility species concept. Auk. 2017;134:393–409.
Google Scholar
Zaidi AA, Makova KD. Investigating mitonuclear interactions in human admixed populations. Nat Ecol Evol. 2019;3:213–22.
PubMed
PubMed Central
Google Scholar
Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci. 2003;270:313–21.
CAS
Google Scholar
Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci. 2003;270(suppl_1):S96–9.
CAS
Google Scholar
Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One. 2013;8:e66213.
CAS
PubMed
PubMed Central
Google Scholar
Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol. 2017;26:2212–36.
PubMed
PubMed Central
Google Scholar
Hill GE. Reconciling the Mitonuclear compatibility species concept with rampant mitochondrial introgression. Integr Comp Biol. 2019;59:912–24.
PubMed
Google Scholar
Kilpert F, Held C, Podsiadlowski L. Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications. Mol Phylogenet Evol. 2012;64:106–17.
CAS
PubMed
Google Scholar
Zou H, Jakovlić I, Zhang D, Chen R, Mahboob S, Al-Ghanim KA, et al. The complete mitochondrial genome of Cymothoa indica has a highly rearranged gene order and clusters at the very base of the Isopoda clade. PLoS One. 2018;13:e0203089.
PubMed
PubMed Central
Google Scholar
Zou H, Jakovlić I, Zhang D, Hua C-J, Chen R, Li W-X, et al. Architectural instability, inverted skews and mitochondrial phylogenomics of Isopoda: outgroup choice affects the long-branch attraction artefacts. R Soc Open Sci. 2020;7:191887.
PubMed
PubMed Central
Google Scholar
Hua CJ, Li WX, Zhang D, Zou H, Li M, Jakovlić I, et al. Basal position of two new complete mitochondrial genomes of parasitic Cymothoida (Crustacea: Isopoda) challenges the monophyly of the suborder and phylogeny of the entire order. Parasit Vectors. 2018;11:628.
CAS
PubMed
PubMed Central
Google Scholar
Yu J, An J, Li Y, Boyko CB. The first complete mitochondrial genome of a parasitic isopod supports Epicaridea Latreille, 1825 as a suborder and reveals the less conservative genome of isopods. Syst Parasitol. 2018;95:465–78.
PubMed
Google Scholar
Lins LSF, Ho SYW, Wilson GDF, Lo N. Evidence for Permo-Triassic colonization of the deep sea by isopods. Biol Lett. 2012;8:979–82.
PubMed
PubMed Central
Google Scholar
Zhang D, Zou H, Hua C-J, Li W-X, Mahboob S, Al-Ghanim KA, et al. Mitochondrial architecture rearrangements produce asymmetrical nonadaptive mutational pressures that subvert the phylogenetic reconstruction in Isopoda. Genome Biol Evol. 2019;11:1797–812.
PubMed
PubMed Central
Google Scholar
Zhang D, Zou H, Zhang J, Wang G-T, Jakovlić I. Evolutionary history of inversions in the direction of architecture-driven mutational pressures in crustacean mitochondrial genomes. bioRxiv. 2020; 2020.05.09.085712..
Hassanin A, Léger N, Deutsch J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Syst Biol. 2005;54:277–98.
PubMed
Google Scholar
Wetzer R. Mitochondrial genes and isopod phylogeny (Peracarida: Isopoda). J Crustac Biol. 2002;22:1–14.
Google Scholar
Reyes A, Gissi C, Pesole G, Saccone C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol. 1998;15:957–66.
CAS
PubMed
Google Scholar
Hassanin A. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol. 2006;38:100–16.
CAS
PubMed
Google Scholar
Williams JD, Boyko CB. The global diversity of parasitic isopods associated with crustacean hosts (Isopoda: Bopyroidea and Cryptoniscoidea). PLoS One. 2012;7:e35350.
CAS
PubMed
PubMed Central
Google Scholar
Dreyer H, Wägele J-W. Parasites of crustaceans (lsopoda: Bopyridae) evolved from fish parasites: molecular and morphological evidence. Zoology. 2001;103(2001):157–78.
CAS
Google Scholar
Jarrin JRM, Shanks AL. Ecology of a population of Lissocrangon Stylirostris (Caridea: Crangonidae), with notes on the occurrence and biology of its parasite, Argeia Pugettensis (Isopoda: Bopyridae). J Crustac Biol. 2008;28:613–21.
Google Scholar
An J, Boyko CB, Li X. A review of Bopyrids (Crustacea: Isopoda: Bopyridae) parasitic on Caridean shrimps (Crustacea: Decapoda: Caridea) from China. Bull Am Mus Nat Hist. 2015;2015:1–85.
Google Scholar
Markham JC. Description of a new western Atlantic species of Argeia Dana with a proposed new subfamily for this and related genera (Crustacea Isopoda, Bopyridae). Zool Meded. 1977;52:107–23.
Google Scholar
Fryer G. Variation and systematic problems in a Group of Lernaeid Copepods. Crustaceana. 1961;2:275–85.
Google Scholar
Hua CJ, Zhang D, Zou H, Li M, Jakovlić I, Wu SG, et al. Morphology is not a reliable taxonomic tool for the genus Lernaea: molecular data and experimental infection reveal that L cyprinacea and L cruciata are conspecific. Parasit Vectors. 2019;12:579.
CAS
PubMed
PubMed Central
Google Scholar
Poulin R, Morand S. The diversity of parasites. Q Rev Biol. 2000;75:277–93.
CAS
PubMed
Google Scholar
Huyse T, Poulin R, Théron A. Speciation in parasites: a population genetics approach. Trends Parasitol. 2005;21:469–75.
PubMed
Google Scholar
Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 2005;3:e422.
PubMed
PubMed Central
Google Scholar
Bucklin A, Steinke D, Blanco-Bercial L. DNA barcoding of marine Metazoa. Annu Rev Mar Sci. 2011;3:471–508.
Google Scholar
Castellana S, Vicario S, Saccone C. Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein–coding genes. Genome Biol Evol. 2011;3:1067–79.
CAS
PubMed
PubMed Central
Google Scholar
Shen Y, Kou Q, Zhong Z, Li X, He L, He S, et al. The first complete mitogenome of the South China deep-sea giant isopod Bathynomus sp. (Crustacea: Isopoda: Cirolanidae) allows insights into the early mitogenomic evolution of isopods. Ecol Evol. 2017;7:1869–81.
PubMed
PubMed Central
Google Scholar
Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol. 2015;32:820–32.
CAS
PubMed
Google Scholar
Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, et al. Gene-wide identification of episodic selection. Mol Biol Evol. 2015;32:1365–71.
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002;19:908–17.
CAS
PubMed
Google Scholar
Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–80.
CAS
PubMed
PubMed Central
Google Scholar
Chandler CH, Badawi M, Moumen B, Grève P, Cordaux R. Multiple Conserved Heteroplasmic Sites in tRNA Genes in the Mitochondrial Genomes of Terrestrial Isopods (Oniscidea). G3 GenesGenomesGenetics. 2015;5:1317–22.
CAS
Google Scholar
Peccoud J, Chebbi MA, Cormier A, Moumen B, Gilbert C, Marcadé I, et al. Untangling heteroplasmy, structure, and evolution of an atypical mitochondrial genome by pacbio sequencing. Genetics. 2017;207:269–80.
CAS
PubMed
PubMed Central
Google Scholar
Gray MW. Mitochondrial evolution. Cold Spring Harb Perspect Biol. 2012;4:a011403.
PubMed
PubMed Central
Google Scholar
Swire J, Judson OP, Burt A. Mitochondrial genetic codes evolve to match amino acid requirements of proteins. J Mol Evol. 2005;60:128–39.
CAS
PubMed
Google Scholar
Massey SE, Garey JR. A comparative genomics analysis of codon reassignments reveals a link with mitochondrial proteome size and a mechanism of genetic code change via suppressor tRNAs. J Mol Evol. 2007;64:399–410.
CAS
PubMed
Google Scholar
Lavrov DV, Boore JL, Brown WM. The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Mol Biol Evol. 2000;17:813–24.
CAS
PubMed
Google Scholar
Boore JL. The Duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Sankoff D, Nadeau JH, editors. Comparative Genomics. Netherlands: Springer; 2000. p. 133–47. https://doi.org/10.1007/978-94-011-4309-7_13.
Chapter
Google Scholar
Lynch M, Conery JS. The origins of genome complexity. Science. 2003;302:1401–4.
CAS
PubMed
Google Scholar
Lynch M, Koskella B, Schaack S. Mutation pressure and the evolution of organelle genomic architecture. Science. 2006;311:1727–30.
CAS
PubMed
Google Scholar
Schaack S, Ho EKH, Macrae F. Disentangling the intertwined roles of mutation, selection and drift in the mitochondrial genome. Philos Trans R Soc B Biol Sci. 2020;375:20190173.
CAS
Google Scholar
Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li W-X, et al. The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics. 2017;18:840.
PubMed
PubMed Central
Google Scholar
Azevedo JLB, Hyman BC. Molecular characterization of lengthy mitochondrial DNA duplications from the parasitic nematode Romanomermis culicivorax. Genetics. 1993;133:933–42.
CAS
PubMed
Google Scholar
Kawashima Y, Nishihara H, Akasaki T, Nikaido M, Tsuchiya K, Segawa S, et al. The complete mitochondrial genomes of deep-sea squid (Bathyteuthis abyssicola), bob-tail squid (Semirossia patagonica) and four giant cuttlefish (Sepia apama, S. latimanus, S. lycidas and S. pharaonis), and their application to the phylogenetic analysis of Decapodiformes. Mol Phylogenet Evol. 2013;69:980–93.
CAS
PubMed
Google Scholar
Endo K, Noguchi Y, Ueshima R, Jacobs HT. Novel repetitive structures, deviant protein-encoding sequences and unidentified ORFs in the mitochondrial genome of the brachiopod Lingula anatina. J Mol Evol. 2005;61:36–53.
CAS
PubMed
Google Scholar
Moritz C, Brown WM. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci U S A. 1987;84:7183–7.
CAS
PubMed
PubMed Central
Google Scholar
Gissi C, Iannelli F, Pesole G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity. 2008;101:301–20.
CAS
PubMed
Google Scholar
Helfenbein KG, Fourcade HM, Vanjani RG, Boore JL. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proc Natl Acad Sci U S A. 2004;101:10639–43.
CAS
PubMed
PubMed Central
Google Scholar
Dubie JJ, Caraway AR, Stout MM, Katju V, Bergthorsson U. The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome. Philos Trans R Soc B Biol Sci. 2020;375:20190174.
CAS
Google Scholar
Katju V, Packard LB, Keightley PD. Fitness decline under osmotic stress in Caenorhabditis elegans populations subjected to spontaneous mutation accumulation at varying population sizes. Evolution. 2018;72:1000–8.
CAS
PubMed
Google Scholar
Brand MD. The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans. 2005;33:897–904.
CAS
PubMed
Google Scholar
Salin K, Luquet E, Rey B, Roussel D, Voituron Y. Alteration of mitochondrial efficiency affects oxidative balance, development and growth in frog (Rana temporaria) tadpoles. J Exp Biol. 2012;215:863–9.
CAS
PubMed
Google Scholar
Keeling PJ, Corradi N, Morrison HG, Haag KL, Ebert D, Weiss LM, et al. The reduced genome of the parasitic Microsporidian Enterocytozoon bieneusi lacks genes for Core carbon metabolism. Genome Biol Evol. 2010;2:304–9.
PubMed
PubMed Central
Google Scholar
Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, et al. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol. 2013;69:352–64.
CAS
PubMed
Google Scholar
Castro LR, Austin AD, Dowton M. Contrasting rates of mitochondrial molecular evolution in parasitic Diptera and Hymenoptera. Mol Biol Evol. 2002;19:1100–13.
CAS
PubMed
Google Scholar
Oliveira DCSG, Raychoudhury R, Lavrov DV, Werren JH. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol Biol Evol. 2008;25:2167–80.
CAS
PubMed
PubMed Central
Google Scholar
Clark KA, Howe DK, Gafner K, Kusuma D, Ping S, Estes S, et al. Selfish little circles: transmission Bias and evolution of large deletion-bearing mitochondrial DNA in Caenorhabditis briggsae Nematodes. PLoS One. 2012;7:e41433.
CAS
PubMed
PubMed Central
Google Scholar
Shen H, Braband A, Scholtz G. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol Phylogenet Evol. 2013;66:776–89.
PubMed
Google Scholar
Gan HM, Grandjean F, Jenkins TL, Austin CM. Absence of evidence is not evidence of absence: Nanopore sequencing and complete assembly of the European lobster (Homarus gammarus) mitogenome uncovers the missing nad2 and a new major gene cluster duplication. BMC Genomics. 2019;20:335.
PubMed
PubMed Central
Google Scholar
Klapper W, Kühne K, Singh KK, Heidorn K, Parwaresch R, Krupp G. Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Lett. 1998;439:143–6.
CAS
PubMed
Google Scholar
Saclier N, François CM, Konecny-Dupré L, Lartillot N, Guéguen L, Duret L, et al. Life history traits impact the nuclear rate of substitution but not the mitochondrial rate in isopods. Mol Biol Evol. 2018;35:2900–12.
CAS
PubMed
Google Scholar
Lins LSF, Ho SYW, Lo N. An evolutionary timescale for terrestrial isopods and a lack of molecular support for the monophyly of Oniscidea (Crustacea: Isopoda). Org Divers Evol. 2017;17:813–20.
Google Scholar
Dana JD. Crustacea. In: Sherman C, editor. United States Exploring Expedition. During the years 1838, 1839, 1840, 1841, 1842. Philadelphia: Under the command of Charles Wilkes; 1853. p. 1–936. https://www.biodiversitylibrary.org/item/124951.
Google Scholar
Shiino SM. Bopyrids from Tanabe Bay. Kyoto Imp Univ Ser Biol. 1933;8:249–300.
Google Scholar
Ratnasingham S, Hebert PDN. Bold: the barcode of life data system. Mol Ecol Notes. 2007;7:355–64 http://www.barcodinglife.org.
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
CAS
PubMed
PubMed Central
Google Scholar
Burland TG. DNASTAR’s Lasergene sequence analysis software. In: Misener S, Krawetz SA, editors. Methods in molecular biology™. Totowa: Humana Press; 2000. p. 71–91. https://doi.org/10.1385/1-59259-192-2:71.
Chapter
Google Scholar
Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33(SUPPL. 2):W686–9.
CAS
PubMed
PubMed Central
Google Scholar
Laslett D, Canbäck B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172–5.
CAS
PubMed
Google Scholar
Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20:348–55.
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS
PubMed
PubMed Central
Google Scholar
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.
CAS
PubMed
PubMed Central
Google Scholar
Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 2007;7(Suppl 1):S4.
PubMed
PubMed Central
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway computing environments workshop, GCE 2010; 2010.
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
PubMed
PubMed Central
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95.
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.
CAS
PubMed
Google Scholar
Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47:W59–64.
CAS
PubMed
PubMed Central
Google Scholar
Xia X. DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol. 2018;35:1550–2.
CAS
PubMed
PubMed Central
Google Scholar
Brázda V, Kolomazník J, Lýsek J, Hároníková L, Coufal J, Št’astný J. Palindrome analyser - a new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem Biophys Res Commun. 2016;478:1739–45.
PubMed
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of Phylogenomic data. Mol Biol Evol. 2016;33:1635–8.
CAS
PubMed
PubMed Central
Google Scholar
Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol. 2018;35:773–7.
CAS
PubMed
PubMed Central
Google Scholar