Shen-Miller J. Sacred lotus, the long-living fruits of China antique. Seed Sci Res. 2002;12:131–43.
Article
CAS
Google Scholar
Ming R, VanBuren R, Liu YL, Yang M, Han YP, Li LT, et al. Genome of the long living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol. 2013;14:R41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng LB, Ying JJ, Yang JQ, Li Y, Hui LC, Li SY, et al. Activit y and expression of ADP-glucose pyrophosphorylase during rhizome formation in lotus (Nelumbo nucifera Gaertn.). Bot Stu. 2016;9:57.
Google Scholar
Cheng LB, Liu HY, Jiang RZ, Li SY. A proteomics analysis of adventitious root formation after leaf removal in lotus (Nelumbo nucifera Gaertn.). ZNC. 2018;73:375–89.
CAS
Google Scholar
Falasca G, Zaghi D, Possenti M, Altamura MM. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep. 2004;23:17–25.
Article
CAS
PubMed
Google Scholar
Li SW, Leng Y, Feng L, Zeng XY. Involvement of abscisic acid in regulatin antioxidativedefensesystems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vignaradiata (L.)Wilczek] seedlings under cadmium stress. Environ Sci Pollut Res. 2014;21:525–37.
Article
CAS
Google Scholar
Kevers C, Hausman JF, Faivre-Rampant O, Evers D, Gaspar T. Hormonal control of adventitious rooting: progress and questions. J Appl Bot Angew Bot. 1997;71:71–9.
CAS
Google Scholar
Li SW, Xue L, Xu S, Feng H, An L. Mediators, genes and signaling in adventitious rooting. Bot Rev. 2009;75:230–47.
Article
Google Scholar
Rasmussen A, Hosseini SA, Hajirezaei MR, Druege U, Geelen D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J Exp Bot. 2015;66:1437–52.
Article
CAS
PubMed
Google Scholar
Teale WD, Paponov IA, Palme K. Auxin in action: signaling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol. 2006;7:847–59.
Article
CAS
PubMed
Google Scholar
Hu ZB, Zhang T, Rombaut D, Decaestecker W, Xing A. D’Haeyer et al. Genome-editing based engineering of CESA3 dual cellulose inhibitor resistant plants. Plant Physiol. 2019; doi.org/10.1104/pp.18.01486.
Li X, Liu W, Zhuang L, Zhu Y, Wang F, Chen T, Yang J, et al. Et al. BIGGER ORGANS and ELEPHANT EAR-LIKE LEAF1 control organ size and floral organ internal asymmetry in pea. J Exp Bot. 2019;70:179–91.
Article
CAS
PubMed
Google Scholar
Liu C, Cui DY, Zhao JB, Liu N, Wang B, Liu J, et al. Two Arabidopsis receptor-like cytoplasmic kinases SZE1 and SZE2 associate with the ZAR1-ZED1 complex and are required for effector-triggered immunity. Mol Plant. 2019; doi.org/10.1016/j.molp.2019.03.012.
Qu XY, Cao B, Kang JK, Wang XN, Han XY, Jiang WQ, et al. Fine-tuning stomatal movement through small signaling peptides. Front Plant Sci. 2019;10:69.
Article
PubMed
PubMed Central
Google Scholar
Liu H, Guo SY, Lu MH, Zhang Y, Li JH, Wang W, et al. Biosynthesis of DHGA12 and its roles in Arabidopsis seedling establishment. Nat Commun. 2019;10:1768.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng B, Peterson CM, Mitchell RJ. The role of sucrose, auxin and explant source on in vitro rooting of seedling explants of Eucalyptus sideroxylon. Plant Sci. 1992;87:207–14.
Article
CAS
Google Scholar
Cano-Delgado AI, Metzlaff K, Bevan MW. The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development. 2000;127:3395–405.
CAS
PubMed
Google Scholar
Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H. Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res. 2003;116:83–91.
Article
CAS
PubMed
Google Scholar
Fukaki H, Tasaka M. Hormone interactions during lateral root formation. Plant Mol Biol. 2009;69:437–49.
Article
CAS
PubMed
Google Scholar
Mergemann H, Sauter M. Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol. 2000;124:609–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rovere FD, Fattorini L, D’Angeli S, Veloccia A, Duca SD, Cai G, et al. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers. Ann Bot. 2015;115:617–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Steffens B, Wang JX, Sauter M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deep water rice. Planta. 2006;223:604–12.
Article
CAS
PubMed
Google Scholar
Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ. Root formation in ethylene-insensitive plants. Plant Physiol. 1999;121:53–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stefancic M, Stampar F, Ostereg G. Influence of IAA and IBA on root development and quality of Prunus ‘GiSeIA5’ leafy cuttings. Hort Sci. 2005;40:2052–5.
Article
CAS
Google Scholar
Negi S, Sukumar P, Liu X, Cohen JD, Muday GK. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J. 2010;61:3–15.
Article
CAS
PubMed
Google Scholar
Visser E, Cohen JD, Barendse G, Blom C, Voesenek L. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumexpalustris Sm. Plant Physiol. 1996;112:1687–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sieberer T, Leyser O. Plant science-auxin transport, but in which direction? Science. 2006;312:858–60.
Article
CAS
PubMed
Google Scholar
Marchant A, Bhalerao R, Casimiro I, Eklöf J, Casero PJ, Bennett M, et al. AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell. 2002;14:589–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sauer M, Balla J, Luschnig C, Wiśniewska J, Reinöhl V, Friml J, Benková E, et al. Canalization of auxin flow by aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 2006;20:2902–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu M, Zhu L, Shou HX, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in Rice. Plant Cell Physiol. 2005;46:1674–81.
Article
CAS
PubMed
Google Scholar
Liu HJ, Wang SF, Yu XB, Yu J, He XW, Zhang SL, et al. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J. 2005;43:47–56.
Article
PubMed
CAS
Google Scholar
Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat. 2009;10:141–8.
CAS
Google Scholar
Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M. Repression of flowering by the miR172 target SMZ. PLoS Biol. 2009;7:e1000148.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun P, Zhang ZL, Zhu QF, Zhang GY, Xiang P, Lin YL, et al. Dentification of miRNAs and target genes regulating catechin biosynthesis in tea (Camellia sinensis). J Integ Agri. 2018;17:1154–64.
Article
CAS
Google Scholar
Hussain K, Mungikar K, Kulkarni A, Kamble A. Identification, characterization and expression analysis of pigeonpea miRNAs in response. Gene. 2018;653:57–64.
Article
CAS
PubMed
Google Scholar
Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, Bellini C. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and MicroRNA abundance. Plant Cell. 2009;21:3119–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou YB, Jiang FL, Zheng XL, Wu Z. Identification and analysis of oxygen responsive microRNAs in the root of wild tomato (S. habrochaites). BMC Plant Biol. 2019;19:100.
Article
PubMed
PubMed Central
Google Scholar
Calvo-Polanco M, Senorans J, Zwiazek JJ. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flood. BMC Plant Biol. 2012;12:99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mach J. Unpureeing the tomato layers of information revealed by micro dissection and highthroughput transcriptome sequencing. Plant Cell. 2011;23:3868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang FD, Li LB, Li HY, Liu LF, Zhang YH, Gao JW, et al. Transcriptome analysis of rosette and folding leaves in Chinese cabbage using high-throughput RNA sequencing. Genomics. 2012;99:299–307.
Article
CAS
PubMed
Google Scholar
Chou CH, Huang YC, Liu ZH. Peroxidase genes differentially respond to auxin during the formation of adventitious roots in soybean hypocotyl. Plant Growth Regul. 2010;60:151–61.
Article
CAS
Google Scholar
Savitsky PA, Gazaryan IG, Tishkov VI, Lagrimini LM, Ruzgas TR, Gorton L. Oxidation of indole-3-acetic acid by dioxygencatalysed by plant peroxidases: specificity for the enzyme structure. Biochem J. 1999;340:579–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R. Auxin transport promotes Arabidopsis lateral root nitiation. Plant Cell. 2001;13:843–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hobbie L, Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995;7:211–20.
Article
CAS
PubMed
Google Scholar
Friml J, Wisniewska J, Benková E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator AtPIN3 mediates tropism in Arabidopsis. Nat. 2002;415:806–9.
Article
Google Scholar
Friml J, Wisniewska J, Benková E, Mendgen K, Palme K. AtPIN4 mediates sink driven auxin gradients and patterning in Arabidopsis roots. Cell. 2002;108:661–73.
Article
CAS
PubMed
Google Scholar
Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, et al. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 2001;15:2648–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensberger K, Bennett M, et al. Regulation of phyllotaxis by polar auxin transport. Nat. 2003;426:255–60.
Article
CAS
Google Scholar
Levy A, Szwerdszarf D, Abu-Abied M, Mordehaev I, Yaniv Y, Riov J, et al. Profiling microRNAs in Eucalyptus grandis reveals no mutual relationship between alterations in miR156 and miR172 expression and adventitious root induction during development. BMC Genomics. 2014;15:524.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lanteri ML, Laxalt AM, Lamattina L. Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol. 2008;147:188–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gleeson M, Constantin M, Carroll BJ, Mitter N. MicroRNAs as regulators of adventitious root development. J Plant Biochem Biotechnol. 2014;23:339–47.
Article
CAS
Google Scholar
You CX, Zhao Q, Wang XF, Xie XB, Feng XM, Zhao LL, et al. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple. Plant Biotechnol J. 2014;12:183–92.
Article
CAS
PubMed
Google Scholar
Kong WW, Yong L, Zhang MM, Jin F, Li J. A novel Arabidopsis microRNA promotes IAA biosynthesis via the indole-3-acetaldoxime pathway by suppressing SUPERROOT1. Plant Cell Physiol. 2015;56:715–26.
Article
CAS
PubMed
Google Scholar
Li X, Xia K, Liang Z, Chen KL, Gao CX, Zhang MY. MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds. Sci Rep. 2016;6:32158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng LB, Liu HY, Han YY, Li SY. Transcriptome analysis of miRNAs expression revealsnovel insights into adventitious root formation in lotus (Nelumbo nucifera Gaertn.). Mol Biol Rep. 2019. https://doi.org/10.1007/s11033-019-04749-z.
Bhosale R, Boudolf V, Cuevas F, Lu R, Eekhout T, Hu ZB, et al. A spatiotemporal DNA endoploidy map of the Arabidopsis root revealsroles for the endocycle in root development and stress adaptation. Plant Cell. 2018;30:2330–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Hou MJ, Cao L, Xia Y, Shen ZG, Hu ZB. Glutathione Stransferases modulate Cutolerance in Oryza sativa. Environ Exp Bot. 2018;155:313–20.
Article
CAS
Google Scholar
Zhang L, Shi X, Zhang Y, Zhang YT, Wang JJ, Yang JW, et al. CLE9 peptide-inducedstomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ. 2019;42:1033–44.
Article
CAS
PubMed
Google Scholar
Jiao KY, Li X, Guo YF, Guan YN, Guo WX, Luo D, et al. Regulation of compound leaf development in mungbean (Vigna radiata L.) by cup-shaped cotyledon/no apical meristem (cuc/nam) gene. Planta. 2019;249:765–74.
Article
CAS
PubMed
Google Scholar
Xiao TW, Mi MM, Wang CY, Qian M, Chen YH, Zheng LQ, et al. A methionine-R-sulfoxide reductase, OsMSRB5, is required for rice defense against copper toxicity. Environ Exp Bot. 2018;153:45–53.
Article
CAS
Google Scholar
Pence VC, Caruso JL. Elisa determination of IAA using antibodies against ring-linked IAA. Phytochem. 1987;26:1251–5.
Article
CAS
Google Scholar
Wight AW. van Niekerk PJ. A sensitive and selective method for the determination of reducing sugars and sucrose in food and plant material by high performanceliquid chromatography. Food Chem. 1983;10:211–24.
Article
CAS
Google Scholar