Han LZ, Li SB, Liu PL, Peng YF, Hou ML. New artificial diet for continuous rearing of Chilo suppressalis (Lepidoptera: Crambidae). Ann Entomol Soc Am. 2012;105(2):253–8.
Google Scholar
Ge ZY, Wan PJ, Li GQ, Xia YG, Han ZJ. Characterization of cysteine protease-like genes in the striped rice stem borer, Chilo suppressalis. Genome. 2014;57(2):79–88.
CAS
PubMed
Google Scholar
Ma WH, Zhao XX, Yin CL, Fan J, Du XY, Chen TY, et al. A chromosome-level genome assembly reveals the genetic basis of cold tolerance in a notorious rice insect pest, Chilo suppressalis. Mol Ecol Resour. 2019;00:1–15.
Google Scholar
Deka S, Barthakur S. Overview on current status of biotechnological interventions on yellow stem borer, Scirpophaga incertulas (Lepidoptera: Crambidae) resistance in rice. Biotechnol Adv. 2010;28:70–81.
CAS
PubMed
Google Scholar
Gao YL, Fu Q, Wang F, Lai FX, Luo J, Peng YF, et al. Effects of transgenic rice harboring cry1Ac and CpTI genes on survival of Chilo suppressalis and Sesamia inferens and field composition of rice stem borers. Chin J Rice Sci. 2006;20:543–8.
CAS
Google Scholar
Han LZ, Liu PL, Wu KM, Peng YF, Wang F. Population dynamics of Sesamia inferens on transgenic rice expressing Cry1Ac and CpTI in southern China. Environ Entomol. 2008;37:1361–70.
CAS
PubMed
Google Scholar
Han LZ, Hou ML, Wu KM, Peng YF, Wang F. Lethal and sub-lethal effects of transgenic rice containing cry1Ac and CpTI genes on the pink stem borer, Sesamia inferens (Walker). Sci Agri Sin. 2011;10:384–93.
CAS
Google Scholar
Han LZ, Han C, Liu ZW, Chen FJ, Jurat-Fuentes JL, Hou ML, et al. Binding site concentration explains the differential susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-producing rice. Appl Environ Microbiol. 2014;80:5134–40.
PubMed
PubMed Central
Google Scholar
Li ZY, Sui H, Xu YB, Han LZ, Chen FJ. Effects of insect-resistant transgenic Bt rice with a fused cry1Ab+cry1Ac gene on population dynamic of the stem borers, Chilo suppressalis and Sesamia inferens, occurring in paddy field. Acta Ecol Sin. 2012;32:1783–9.
Google Scholar
Wang YN, Zhang L, Li YH, Liu YM, Han LZ, Zhu Z, et al. Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest, Chilo suppressalis (Lepidoptera: Crambidae). Environ Entomol. 2014;43:528–36.
CAS
PubMed
Google Scholar
Tabashnik BE, Brévault T, Carrière Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol. 2013;31:510–21.
CAS
PubMed
Google Scholar
Bravo A, Soberón M. How to cope with insect resistance to Bt toxins? Trends Biotechnol. 2008;26(10):573–9.
CAS
PubMed
Google Scholar
Soberon M, Gill SS, Bravo A. Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci. 2009;66(8):1337–49.
CAS
PubMed
Google Scholar
Zhang XB, Candas M, Griko NB, Taussig R, Bulla LA. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A. 2006;103(26):9897–902.
CAS
PubMed
PubMed Central
Google Scholar
Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev. 2007;71(2):255–81.
CAS
PubMed
PubMed Central
Google Scholar
Ferré J, Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol. 2002;47(1):501–33.
PubMed
Google Scholar
Rajagopal R, Arora N, Sivakumar S, Rao NGV, Nimbalkar SA, Bhatnagar RK. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Biochem J. 2009;419:309–16.
CAS
PubMed
Google Scholar
Liu CX, Xiao YT, Li XC, Oppert B, Tabashnik BE, Wu KM. Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm. Sci Rep. 2014;4:7219.
CAS
PubMed
PubMed Central
Google Scholar
Wei JZ, Liang GM, Wang BJ, Zhong F, Chen L, Khaing MM, et al. Activation of Bt protoxin Cry1Ac in resistant and susceptible cotton bollworm. PLoS One. 2016;11:e0156560.
PubMed
PubMed Central
Google Scholar
Li H, Oppert B, Higgins RA, et al. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae). Insect Biochem Mol Biol. 2004;34:753–62.
PubMed
Google Scholar
Li H, Oppert B, Higgins RA, et al. Susceptibility of Dipel-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to individual Bacillus thuringiensis protoxins. J Econ Entomol. 2005;98(4):1333–40.
CAS
PubMed
Google Scholar
Xu XJ, Yu LY, Wu YD. Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol. 2005;71:948–54.
CAS
PubMed
PubMed Central
Google Scholar
Tiewsiri K, Wang P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Proc Natl Acad Sci U S A. 2011;34:14037–42.
Google Scholar
Jurat-Fuentes JL, Adang MJ. A proteomic approach to study Cry1Ac binding proteins and their alterations in resistant Heliothis virescens larvae. J Invertebr Pathol. 2007;95:187–91.
CAS
PubMed
Google Scholar
Xiao YT, Zhang T, Liu CX, Heckel DG, Li XC, Tabashnik BE, et al. Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Sci Rep. 2014;4:6184.
CAS
PubMed
PubMed Central
Google Scholar
Atsumi S, Miyamoto K, Yamamoto K, Narukawa J, Kawai S, Sezutsu H, et al. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc Natl Acad Sci U S A. 2012;109:E1591–8.
CAS
PubMed
PubMed Central
Google Scholar
Gahan LJ, Pauchet Y, Vogel H, Heckel DG. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 2010;6(12):e1001248.
CAS
PubMed
PubMed Central
Google Scholar
Jurat-Fuentes JL, Karumbaiah L, Jakka SRK, Ning C, Liu C, Wu KM, et al. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to cry toxins from Bacillus thuringiensis. PLoS One. 2011;6:e17606.
CAS
PubMed
PubMed Central
Google Scholar
Agrawal N. Cloning and characterization of cry 1C toxin-binding aminopeptidase N isolated from the midgut of lepidopteran pest, spodoptera litura. Hist Philos Q. 2002;17(2):117–36.
Google Scholar
Agrawal N, Malhotra P, Bhatnagar RK. siRNA-directed silencing of transgene expressed in cultured insect cells. Biochem Biophys Res Commun. 2004;320(2):428–34.
CAS
PubMed
Google Scholar
Ren XL, Chen RR, Zhang Y, et al. A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement of Cry1Ca and Cry1Ac toxicity. Appl Environ Microb. 2013;79(18):5576–83.
CAS
Google Scholar
Herrero S, Gechev T, Bakker PL, Moar WJ, de Maagd RA. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics. 2005;6:96.
PubMed
PubMed Central
Google Scholar
Alcantara EP, Aguda RM, Curtiss A, et al. Bacillus thuringiensis -endotoxin binding to brush border membrane vesicles of rice stem borers. Arch Insect Biochem. 2010;55(4):169–77.
Google Scholar
Masson L, Mazza A, Gringorten L, et al. Specificity domain localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system. Mol Microbiol. 1994;14(5):851–60.
CAS
PubMed
Google Scholar
Du LX, Chen G, Han LZ, Peng YF. Cadherin CsCad plays differential functional roles in Cry1Ab and Cry1C intoxication in Chilo suppressalis. Sci Rep. 2019;9:8507.
PubMed
PubMed Central
Google Scholar
Wang XY, Du LX, Liu CX, Gong L, Han LZ, Peng YF. RNAi in the striped stem borer, Chilo suppressalis, establishes a functional role for aminopeptidase N in Cry1Ab intoxication. J Invertebr Pathol. 2017;143:1–10.
PubMed
Google Scholar
Qiu L, Fan JX, Zhang BY, Liu L, Wang XP, Lei CL, et al. RNA interference knockdown of aminopeptidase N genes decrease the susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1C-expressing transgenic rice. J Invertebr Pathol. 2017;145:9–12.
CAS
PubMed
Google Scholar
Zhang Z, Teng XL, Ma WH, Li F. Knockdown of two cadherin genes confers resistance to Cry2A and Cry1C in Chilo suppressalis. Sci Rep. 2017;7:5992.
PubMed
PubMed Central
Google Scholar
Qiu L, Wang P, Wu T, Li B, Wang X, Lei C. Down regulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. Insect Mol Biol. 2018;27(1):83–9.
CAS
PubMed
Google Scholar
Xu LN, Wang YQ, Wang ZY, Hu BJ, Ling YH, He KL. Transcriptome differences between Cry1Ab resistant and susceptible strains of Asian corn borer. BMC Genomics. 2015;16(1):173.
PubMed
PubMed Central
Google Scholar
Lei YY, Zhu X, Xie W, Wu QJ, Wang SL, Guo ZJ, et al. Midgut transcriptome response to a cry toxin in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Gene. 2014;533(1):180–7.
CAS
PubMed
Google Scholar
Wei JZ, Yang S, Chen L, Liu XG, Du MF, An SH, et al. Transcriptomic responses to different Cry1Ac selection stresses in Helicoverpa armigera. Front Physiol. 2018;9:1653.
PubMed
PubMed Central
Google Scholar
Zhang SP, Cheng HM, Gao YL, Wang GR, Liang GM, Wu KM. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol. 2009;39:421–9.
CAS
PubMed
Google Scholar
Valaitis AP. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. J Invertebr Pathol. 2011;108:69–75.
CAS
PubMed
Google Scholar
Flores-Escobar B, Rodríguez-Magadan H, Bravo A, Soberón M, Gómez I. Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis. Appl Environ Microbiol. 2013;79:4543.
CAS
PubMed
PubMed Central
Google Scholar
Wei JZ, Zhang M, Liang GM, Wu KM, Guo YY, Ni XZ, et al. APN1 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Sci Rep. 2016;6:19179.
CAS
PubMed
PubMed Central
Google Scholar
Després L, Stalinski R, Tetreau G, Paris M, Bonin A, Navratil V, et al. Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins. BMC Genomics. 2014;15:926.
PubMed
PubMed Central
Google Scholar
Shabbir MZ, Zhang TT, Wang ZY, He KL. Transcriptome and proteome alternation with resistance to Bacillus thuringiensis Cry1Ah toxin in Ostrinia furnacalis. Front Physiol. 2019;10:27.
PubMed
PubMed Central
Google Scholar
Khajuria C, Buschman LL, Chen MS, Siegfried BD, Zhu KY. Identification of a novel Aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn Pest (Ostrinia nubilalis). PLoS One. 2011;6(8):e23983.
CAS
PubMed
PubMed Central
Google Scholar
Baxter SW, Badenes-Pérez FR, Morrison A, Vogel H, Crickmore N, Kain W, et al. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics. 2011;189(2):675–9.
CAS
PubMed
PubMed Central
Google Scholar
Guo ZJ, Kang S, Zhu X, Xia JX, Wu QJ, Wang SL, et al. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). Insect Biochem Mol Biol. 2015;59:30–40.
CAS
PubMed
Google Scholar
Tanaka S, Endo H, Adegawa S, Iizuka A, Imamura K, Kikuta S, et al. Bombyx mori abc transporter c2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin. Insect Biochem Mol Biol. 2017;91:44–54.
CAS
PubMed
Google Scholar
Jurat-Fuentes JL, Adang MJ. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. J Invertebr Pathol. 2006;92(3):166–71.
CAS
PubMed
Google Scholar
Jurat-Fuentes JL, Adang MJ. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur J Biochem. 2004;271:3127–35.
CAS
PubMed
Google Scholar
Fernandez LE, Aimanova KG, Gill SS, Bravo A, Soberón M. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedesa egypti larvae. Biochem J. 2006;394:77–84.
CAS
PubMed
PubMed Central
Google Scholar
Moonsom S, Chaisri U, Kasinrerk W, Angsuthanasombat C. Binding characteristic to mosquito-larval midgut proteins of the cloned domain II-III fragment from the Bacillus thuringiensis Cry4Ba toxin. J Biochem Mol Biol. 2007;40:783–90.
CAS
PubMed
Google Scholar
Vellichirammal NN, Wang HC, Eyun S, Moriyama EN, Coates BS, Miller NJ, et al. Transcriptional analysis of susceptible and resistant European corn borer strains and their response to Cry1F protoxin. BMC Genomics. 2015;16:558.
Google Scholar
Scott JG, Wen Z. Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci. 2001;57(10):958–67.
CAS
PubMed
Google Scholar
Cao GC, Zhang LL, Liang GM, Li XC, Wu KM. Involvement of nonbinding site proteinases in the development of resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry1Ac. J Econ Entomol. 2013;106:2514–21.
CAS
PubMed
Google Scholar
Tang H, Chen G, Chen FJ, Han LZ, Peng YF. Development and relative fitness of Cry1C resistance in Chilo suppressalis. Pest Manag Sci. 2017;74(3):590–7.
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
CAS
PubMed
PubMed Central
Google Scholar
Dewey CN, Bo L. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
PubMed
PubMed Central
Google Scholar