Sagan L. On the origin of mitosing cells. J Theor BiolAcademic Press. 1967;14.
Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR. Evolutionary relationships among cyanobacteria and green chloroplasts. J BacteriolAmerican Society for Microbiology (ASM). 1988;170:3584–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flores E, Herrero A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol. 2010;8:39–50.
Article
CAS
PubMed
Google Scholar
Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A, Flores E, et al. Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J. 2008;27:1299–308 John Wiley & Sons, Ltd; [cited 2020 May 25]. Available from: http://emboj.embopress.org/cgi/doi/10.1038/emboj.2008.66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flores E, Herrero A, Wolk CP, Maldener I. Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends MicrobiolElsevier. 2006;14:439–43.
Article
CAS
PubMed
Google Scholar
Giddings TH, Staehelin LA. Observation of microplasmodesmata in both heterocyst-forming and non-heterocyst forming filamentous cyanobacteria by freeze-fracture electron microscopy. Arch MicrobiolSpringer-Verlag. 1981;129:295–8.
Article
Google Scholar
Castenholz RW, Wilmotte A, Herdman M, Rippka R, Waterbury JB, Iteman I, et al. Phylum BX. Cyanobacteria. Bergey’s manual® Syst Bacteriol. New York: Springer New York; 2001. p. 473–599.
Book
Google Scholar
Stanier RY, Deruelles J, Rippka R, Herdman M, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology Microbiology Society. 1979;111:1–61.
Article
Google Scholar
Sarma TA. Handbook of cyanobacteriaCRC Press, Taylor and Francis; 2012.
Book
Google Scholar
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol. 2019:37–50 Nature Publishing Group; [cited 2020 Aug 10]. Available from: www.nature.com/nrmicro.
Jiang Q, Qin S, Wu Q. Genome-wide comparative analysis of metacaspases in unicellular and filamentous cyanobacteria. BMC GenomicsBioMed Central. 2010;11:198.
Article
PubMed
PubMed Central
CAS
Google Scholar
Asplund-Samuelsson J, Sundh J, Dupont CL, Allen AE, McCrow JP, Celepli NA, et al. Diversity and expression of bacterial metacaspases in an aquatic ecosystem. Front Microbiol. 2016;7:1043.
Klemenčič M, Funk C. Structural and functional diversity of caspase homologues in non-metazoan organisms. ProtoplasmaSpringer-Verlag Wien. 2018;255:387–97.
Zhang X, Zhao F, Guan X, Yang Y, Liang C, Qin S. Genome-wide survey of putative serine/threonine protein kinases in cyanobacteria. BMC Genomics. 8:395 BioMed Central; 2007 [cited 2020 Mar 22]. Available from: http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-8-395.
Larsson J, Nylander JAA, Bergman B. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol. 2011;11:187 BioMed Central; [cited 2020 Aug 10]. Available from: http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-11-187.
Article
PubMed
PubMed Central
Google Scholar
Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, Deora R, et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. NatureNature Publishing Group. 2004;431:476–81.
Article
CAS
PubMed
Google Scholar
Wu L, Gingery M, Abebe M, Arambula D, Czornyj E, Handa S, et al. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Nucleic Acids ResNarnia. 2018;46:11–24.
Article
CAS
PubMed
Google Scholar
Pfreundt U, Kopf M, Belkin N, Berman-Frank I, Hess WR. The primary transcriptome of the marine diazotroph Trichodesmium erythraeum IMS101. Sci RepNature Publishing Group. 2015;4:6187.
Article
CAS
Google Scholar
Miller JL, Le CJ, Hodes A, Barbalat R, Miller JF, Ghosh P. Selective ligand recognition by a diversity-generating Retroelement variable protein. Bjorkman PJ, editor. PLoS Biol. 2008;6:e131.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arambula D, Wong W, Medhekar BA, Guo H, Gingery M, Czornyj E, et al. Surface display of a massively variable lipoprotein by a legionella diversity-generating retroelement. Proc Natl Acad Sci. 2013;110:8212 LP–8217.
Article
Google Scholar
Paul BG, Burstein D, Castelle CJ, Handa S, Arambula D, Czornyj E, et al. Retroelement-guided protein diversification abounds in vast lineages of bacteria and Archaea. Nat MicrobiolNature Publishing Group. 2017;2:17045.
Guo H, Arambula L, Ghosh P, Miller JF. Diversity-generating Retroelements in phage and bacterial genomes. Washington, DC: ASM Press; 2015. p. 1237–52. [cited 2020 Aug 14]. Mob DNA III [Internet]. Available from: http://doi.wiley.com/10.1128/9781555819217.ch53.
Google Scholar
Naorem SS, Han J, Wang S, Lee WR, Heng X, Miller JF, et al. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. Proc Natl Acad Sci U S A. 2017;114:E10187–95 National Academy of Sciences; [cited 2020 Aug 10] Available from: /pmc/articles/PMC5703328/?report=abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science (80- ). 2002;295:2091–4 American Association for the Advancement of Science; [cited 2020 Aug 10]. Available from: http://science.sciencemag.org/.
Article
CAS
Google Scholar
Le Coq J, Ghosh P. Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement. Proc Natl Acad Sci U S ANational Academy of Sciences. 2011;108:14649–53.
Article
PubMed
PubMed Central
Google Scholar
Roux S, Paul BG, Bagby SC, Allen MA, Attwood G, Cavicchioli R, et al. Ecology and molecular targets of hypermutation in the global microbiome[cited 2020 May 25]; Available from. https://doi.org/10.1101/2020.04.01.020958.
Schillinger T, Zingler N. The low incidence of diversity-generating retroelements in sequenced genomes. Mob Genet ElemInforma UK Limited. 2012;2:287–91.
Article
Google Scholar
Yan F, Yu X, Duan Z, Lu J, Jia B, Qiao Y, et al. Discovery and characterization of the evolution, variation and functions of diversity-generating retroelements using thousands of genomes and metagenomes. BMC Genomics. 2019;20:595.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S, Sczyrba A, et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat CommunNature Publishing Group. 2015;6:1–8.
Article
CAS
Google Scholar
Kopf M, Möke F, Bauwe H, Hess WR, Hagemann M. Expression profiling of the bloom-forming cyanobacterium Nodularia CCY9414 under light and oxidative stress conditions. ISME JNature Publishing Group. 2015;9:2139–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voß B, Bolhuis H, Fewer DP, Kopf M, Möke F, Haas F, et al. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-Transcriptome analysis. Janssen PJ, editor. PLoS OnePublic Library of Science. 2013;8:e60224.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoving JC, Wilson GJ, Brown GD. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol. 2014;16:185–94.
del Fresno C, Iborra S, Saz-Leal P, Martínez-López M, Sancho D. Flexible signaling of myeloid C-type Lectin receptors in immunity and inflammation. Front ImmunolFrontiers. 2018;9:804.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–217.
Article
CAS
PubMed
Google Scholar
Guo H, Tse LV, Nieh AW, Czornyj E, Williams S, Oukil S, et al. Target site recognition by a diversity-generating Retroelement. Burkholder WF, editor. PLoS Genet. 2011;7:e1002414[cited 2020 Aug 10]. Available from. https://doi.org/10.1371/journal.pgen.1002414.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, et al. Mechanism of IS200/IS605 family DNA Transposases: activation and transposon-directed target site selection. CellElsevier. 2008;132:208–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
He S, Corneloup A, Guynet C, Lavatine L, Caumont-Sarcos A, Siguier P, et al. The IS200/IS605 family and “Peel and paste” single-strand transposition mechanism. Microbiol SpectrAmerican Society for Microbiology. 2015;3:609-30.
Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. FASEB. 1995;9:576–96.
Article
CAS
Google Scholar
Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem. 2000;69:183–215.
Article
CAS
PubMed
Google Scholar
Janczarek M, Vinardell J-M, Lipa P, Karaś M. Hanks-type serine/threonine protein kinases and phosphatases in bacteria: roles in signaling and adaptation to various environments. Int J Mol Sci. 2018;19:2872 MDPI AG; [cited 2020 Mar 22]. Available from: http://www.mdpi.com/1422-0067/19/10/2872.
Article
PubMed Central
CAS
Google Scholar
Libby EA, Goss LA, Dworkin J. The eukaryotic-like Ser/Thr kinase PrkC regulates the essential WalRK two-component system in Bacillus subtilis. PLoSGenetPublic Library of Science. 2015;11:e1005275.
Mijakovic I, Macek B. Impact of phosphoproteomics on studies of bacterial physiology. FEMS Microbiol Rev. 2012;36:877–92.
Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin MicrobiolElsevier Ltd. 2015;24:47–52.
Shi L, Pigeonneau N, Ravikumar V, Dobrinic P, Macek B, Franjevic D, et al. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues. Front MicrobiolFrontiers Research Foundation. 2014;5:495.
Shi L, Ji B, Kolar-Znika L, Boskovic A, Jadeau F, Combet C, et al. Evolution of bacterial protein-tyrosine kinases and their relaxed specificity toward substrates. Genome Biol Evol. 2014;6:800–17Available from. https://doi.org/10.1093/gbe/evu056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capra EJ, Perchuk BS, Skerker JM, Laub MT. Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families. CellCell Press. 2012;150:222–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aravind L, Dixit VM, Koonin EV, Aravind L, Dixit VM, Koonin EV, et al. The domains of death: evolution of the apoptosis machinery. Trends Biochem SciElsevier. 1999;24:47–53.
Article
CAS
PubMed
Google Scholar
Klemenčič M, Novinec M, Dolinar M. Orthocaspases are proteolytically active prokaryotic caspase homologues: the case of Microcystis aeruginosa. Mol Microbiol. 2015;98:142-50.
Spungin D, Bidle KD, Berman-Frank I. Metacaspase involvement in programmed cell death of the marine cyanobacterium Trichodesmium. Environ Microbiol. 2018; 21:667-81.
Asplund-Samuelsson J. The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs. Mol MicrobiolJohn Wiley & Sons, Ltd (10.1111). 2015;98:1–6.
Article
CAS
PubMed
Google Scholar
Kenneth Allan R, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress ChaperonesSpringer. 2011;16:353–67.
van der Voorn L, Ploegh HL. The WD-40 repeat. FEBS Lett. 1992;307:131–4 John Wiley & Sons, Ltd; [cited 2020 Mar 23]. Available from: http://doi.wiley.com/10.1016/0014-5793%2892%2980751-2.
Article
PubMed
Google Scholar
Tewari R, Bailes E, Bunting KA, Coates JC. Armadillo-repeat protein functions: questions for little creatures. Trends Cell BiolElsevier Current Trends. 2010;20:470–81.
Colombatti A, Bonaldo P, Doliana R. Type a modules: interacting domains found in several non-Fibrillar collagens and in other extracellular matrix proteins. MatrixElsevier. 1993;13:297–306.
Article
CAS
PubMed
Google Scholar
Swiderski MR, Birker D, Jones JDG. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol Plant Microbe InteractThe American Phytopathological Society. 2009;22:157–65.
Article
CAS
PubMed
Google Scholar
Spear AM, Loman NJ, Atkins HS, Pallen MJ. Microbial TIR domains: not necessarily agents of subversion? Trends MicrobiolElsevier Current Trends. 2009;17:393–8.
Article
CAS
PubMed
Google Scholar
Ho YS, Burden LM, Hurley JH. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J. 2000;19:5288–99 Oxford University Press. Available from: https://pubmed.ncbi.nlm.nih.gov/11032796.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sobotka R, Dühring U, Komenda J, Peter E, Gardian Z, Tichy M, et al. Importance of the cyanobacterial Gun4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J Biol ChemAmerican Society for Biochemistry and Molecular Biology. 2008;283:25794–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aravind L, Koonin EV. Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins Struct Funct Genet. 2002;46:355–67.
Article
CAS
PubMed
Google Scholar
Ohmori M, Ikeuchi M, Sato N, Wolk P, Kaneko T, Ogawa T, et al. Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing Cyanobacterium anabaena sp. strain PCC 7120. DNA Res. 2001;8:271-84.
Asplund-Samuelsson J, Bergman B, Larsson J. Prokaryotic Caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity. Driks a, editor. PLoS OnePublic Library of Science. 2012;7:e49888.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mammen M, Choi S-K, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed. 1998;37:2754–94.
Article
Google Scholar
Sharifi F, Ye Y. MyDGR: a server for identification and characterization of diversity-generating retroelements. Nucleic Acids Res. 2019;47:W289–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
Article
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Siguier P. ISfinder: the reference Centre for bacterial insertion sequences. Nucleic Acids ResOxford University Press (OUP). 2006;34:D32–6.
Article
CAS
PubMed
Google Scholar
Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. MicrobiomeBioMed Central Ltd. 2013;1:1–17.
Article
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37 2011/05/18. Oxford University Press; Available from: https://pubmed.ncbi.nlm.nih.gov/21593126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bateman A. The Pfam protein families database. Nucleic Acids ResOxford University Press (OUP). 2002;30:276–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3Available from. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS OnePublic Library of Science. 2010;5:e9490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7:539 John Wiley & Sons, Ltd; [cited 2020 Apr 23]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1038/msb.2011.75.
Article
PubMed
PubMed Central
Google Scholar
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2019;36:1925–7Available from. https://doi.org/10.1093/bioinformatics/btz848.
Article
PubMed Central
Google Scholar
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004. https://doi.org/10.1038/nbt.4229.
Article
CAS
PubMed
Google Scholar