Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A, Zaibert V, Thorpe N, Evershed RP. The earliest horse harnessing and milking. Science. 2009;323:1332–5.
CAS
PubMed
Google Scholar
Ludwig A, Pruvost M, Reissmann M, Benecke N, Brockmann GA, Castanos P, Cieslak M, Lippold S, Llorente L, Malaspinas AS, et al. Coat color variation at the beginning of horse domestication. Science. 2009;324:485.
CAS
PubMed
PubMed Central
Google Scholar
Sponenberg DP, Bellone R. Equine color genetics, 4th edition. London: Blackwell Publishers; 1996.
Rees JL. Genetics of hair and skin color. Annu Rev Genet. 2003;37:67–90.
CAS
PubMed
Google Scholar
Chen Y, Duhl DM, Barsh GS. Opposite orientations of an inverted duplication and allelic variation at the mouse agouti locus. Genetics. 1996;144:265–77.
CAS
PubMed
PubMed Central
Google Scholar
Rieder S, Taourit S, Mariat D, Langlois B, Guerin G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm Genome. 2001;12:450–5.
CAS
PubMed
Google Scholar
Bernard BA. The hair follicle enigma. Exp Dermatol. 2017;26:472–7.
PubMed
Google Scholar
Cerrato S, Ramio-Lluch L, Brazis P, Rabanal RM, Fondevila D, Puigdemont A. Development and characterization of an equine skin-equivalent model. Vet Dermatol. 2014;25:475–e77.
PubMed
Google Scholar
Tomich LM, Pieper JB, Stern AW. Comparing dermoscopy and histological examination of normal equine skin. Vet Dermatol. 2018;29:170–e63.
PubMed
Google Scholar
Imsland F, McGowan K, Rubin CJ, Henegar C, Sundstrom E, Berglund J, Schwochow D, Gustafson U, Imsland P, Lindblad-Toh K, et al. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies dun camouflage color in horses. Nat Genet. 2016;48:152–8.
CAS
PubMed
Google Scholar
Morgenthaler C, Diribarne M, Capitan A, Legendre R, Saintilan R, Gilles M, Esquerre D, Juras R, Khanshour A, Schibler L, et al. A missense variant in the coil1A domain of the keratin 25 gene is associated with the dominant curly hair coat trait (Crd) in horse. Genet Sel Evol. 2017;49:85.
PubMed
PubMed Central
Google Scholar
Oh JW, Kloepper J, Langan EA, Kim Y, Yeo J, Kim MJ, Hsi TC, Rose C, Yoon GS, Lee SJ, et al. A guide to studying human hair follicle cycling in vivo. J Invest Dermatol. 2016;136:34–44.
CAS
PubMed
PubMed Central
Google Scholar
Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014;15:1647–70.
CAS
PubMed
PubMed Central
Google Scholar
Hwang I, Choi KA, Park HS, Jeong H, Kim JO, Seol KC, Kwon HJ, Park IH, Hong S. Neural stem cells restore hair growth through activation of the hair follicle niche. Cell Transplant. 2016;25:1439–51.
PubMed
Google Scholar
Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell. 2002;2:643–53.
CAS
PubMed
Google Scholar
Lo Celso C, Prowse DM, Watt FM. Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development. 2004;131:1787–99.
CAS
PubMed
Google Scholar
Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.
CAS
PubMed
Google Scholar
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6.
CAS
PubMed
Google Scholar
Pan Y, Lin MH, Tian X, Cheng HT, Gridley T, Shen J, Kopan R. Gamma-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell. 2004;7:731–43.
CAS
PubMed
Google Scholar
Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7:678–89.
CAS
PubMed
Google Scholar
Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S. Crossing paths with notch in the hyper-network. Curr Opin Cell Biol. 2007;19:166–75.
CAS
PubMed
Google Scholar
Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 2002;21:3919–26.
CAS
PubMed
PubMed Central
Google Scholar
Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81:449–94.
CAS
PubMed
Google Scholar
Stefkova K, Prochazkova J, Pachernik J. Alkaline phosphatase in stem cells. Stem Cells Int. 2015;2015:628368.
PubMed
PubMed Central
Google Scholar
Muller-Rover S, Handjiski B, van der Veen C, Eichmuller S, Foitzik K, McKay IA, Stenn KS, Paus R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol. 2001;117:3–15.
CAS
PubMed
Google Scholar
Al-Bagdadi FK, Titkemeyer CW, Lovell J. Alkaline phosphatase reaction in hair follicles of male beagle dogs during hair cycle stages. Anat Histol Embryol. 1978;7:245–52.
CAS
PubMed
Google Scholar
Paus R, Muller-Rover S, Van Der Veen C, Maurer M, Eichmuller S, Ling G, Hofmann U, Foitzik K, Mecklenburg L, Handjiski B. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol. 1999;113:523–32.
CAS
PubMed
Google Scholar
Thibaut S, Gaillard O, Bouhanna P, Cannell DW, Bernard BA. Human hair shape is programmed from the bulb. Br J Dermatol. 2005;152:632–8.
CAS
PubMed
Google Scholar
Kopf AW. The distribution of alkaline phosphatase in normal and pathologic human skin. AMA Arch Derm. 1957;75:1–37.
CAS
PubMed
Google Scholar
Johnson PL, Butcher EO, Bevelander G. The distribution of alkaline phosphatase in the cyclic growth of the rat hair follicle. Anat Rec. 1945;93:355–8.
CAS
PubMed
Google Scholar
Iida M, Ihara S, Matsuzaki T. Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Develop Growth Differ. 2007;49:185–95.
CAS
Google Scholar
Handjiski BK, Eichmuller S, Hofmann U, Czarnetzki BM, Paus R. Alkaline phosphatase activity and localization during the murine hair cycle. Br J Dermatol. 1994;131:303–10.
CAS
PubMed
Google Scholar
McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol. 2003;121:1267–75.
CAS
PubMed
Google Scholar
Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc. 2003;8:46–55.
CAS
PubMed
Google Scholar
Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest. 2001;107:409–17.
CAS
PubMed
PubMed Central
Google Scholar
Richardson GD, Arnott EC, Whitehouse CJ, Lawrence CM, Reynolds AJ, Hole N, Jahoda CA. Plasticity of rodent and human hair follicle dermal cells: implications for cell therapy and tissue engineering. J Investig Dermatol Symp Proc. 2005;10:180–3.
PubMed
Google Scholar
Lin M, Mao ZJ. lncRNA-mRNA competing endogenous RNA network in IR-hepG2 cells ameliorated by APBBR decreasing ROS levels: a systematic analysis. PeerJ. 2020;8:e8604.
PubMed
PubMed Central
Google Scholar
Martin M . Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet J. 2011;17(1).
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
CAS
PubMed
PubMed Central
Google Scholar
Ghosh S, Chan CK. Analysis of RNA-Seq data using TopHat and cufflinks. Methods Mol Biol. 2016;1374:339–61.
CAS
PubMed
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.
CAS
PubMed
PubMed Central
Google Scholar
Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol. 2015;33:243.
CAS
PubMed
PubMed Central
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Alicia O. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
PubMed
PubMed Central
Google Scholar