Wang H, Wang H, Shao H, Tang X. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci. 2016;7:67. https://doi.org/10.3389/fpls.2016.00067.
Article
PubMed
PubMed Central
Google Scholar
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, et al. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci. 2020;63(5):635–74. https://doi.org/10.1007/s11427-020-1683-x.
Article
PubMed
Google Scholar
Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot. 2004;55(395):225–36. https://doi.org/10.1093/jxb/erh005.
Article
CAS
PubMed
Google Scholar
Zhang JZ. Overexpression analysis of plant transcription factors. Curr Opin Plant Biol. 2003;6(5):430–40. https://doi.org/10.1016/s1369-5266(03)00081-5.
Article
CAS
PubMed
Google Scholar
Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C. Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR-Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Mol Biotechnol. 2019;61(2):153–72. https://doi.org/10.1007/s12033-018-0144-x.
Article
CAS
PubMed
Google Scholar
Xiang L, Liu C, Luo J, He L, Deng Y, Yuan J, Wu C, Cai Y. A tuber mustard AP2/ERF transcription factor gene, BjABR1, functioning in abscisic acid and abiotic stress responses, and evolutionary trajectory of the ABR1 homologous genes in Brassica species. PeerJ. 2018;6:e6071. https://doi.org/10.7717/peerj.6071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H. The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene. 2010;457(1–2):1–12. https://doi.org/10.1016/j.gene.2010.02.011.
Article
CAS
PubMed
Google Scholar
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006;140(2):411–32. https://doi.org/10.1104/pp.105.073783.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbe H, Han S, Baum B, Laberge S, Miki B. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol. 2010;74(4–5):313–26. https://doi.org/10.1007/s11103-010-9674-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Park SH, Huang J, Do Choi Y, An G, et al. RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell. 2010;2(6):1777–91. https://doi.org/10.1105/tpc.109.069575.
Article
CAS
Google Scholar
Li CW, Su RC, Cheng CP, Sanjaya YSJ, Hsieh TH, Chao TC, Chan MT. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol. 2011;156(1):213–27. https://doi.org/10.1104/pp.111.174268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta. 2012;1819(2):86–96. https://doi.org/10.1016/j.bbagrm.2011.08.004.
Article
CAS
PubMed
Google Scholar
Giri MK, Swain S, Gautam JK, Singh S, Singh N, Bhattacharjee L, Nandi AK. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. J Plant Physiol. 2014;171(10):860–7. https://doi.org/10.1016/j.jplph.2013.12.015.
Article
CAS
PubMed
Google Scholar
Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol. 2011;21(6):508–14. https://doi.org/10.1016/j.cub.2011.02.020.
Article
CAS
PubMed
Google Scholar
Qi W, Sun F, Wang Q, Chen M, Huang Y, Feng YQ, Luo X, Yang J. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol. 2011;157(1):216–28. https://doi.org/10.1104/pp.111.179945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J. 2010;64(6):936–47. https://doi.org/10.1111/j.1365-313X.2010.04384.x.
Article
CAS
PubMed
Google Scholar
Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics. 2010;11:719. https://doi.org/10.1186/1471-2164-11-719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Li X. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Sci Rep. 2018;8(1):15612. https://doi.org/10.1038/s41598-018-33744-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan ZQ, Kuang JF, Fu CC, Shan W, Han YC, Xiao YY, Ye YJ, Lu WJ, Lakshmanan P, Duan XW, et al. The banana transcriptional repressor MaDEAR1 negatively regulates cell Wall-modifying genes involved in fruit ripening. Front Plant Sci. 2016;7:1021. https://doi.org/10.3389/fpls.2016.01021.
Article
PubMed
PubMed Central
Google Scholar
Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, Lourenço T, Abreu IA, Sebastián A, Fernandes L, Contreras-Moreira B, Oliveira MM, et al. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol. 2013;82(4–5):439–55. https://doi.org/10.1007/s11103-013-0073-9.
Article
CAS
PubMed
Google Scholar
Wang C-T, Dong Y-M. Overexpression of maize ZmDBP3 enhances tolerance to drought and cold stress in transgenic Arabidopsis plants. Biologia. 2009;64(6):1108. https://doi.org/10.2478/s11756-009-0198-0.
Article
CAS
Google Scholar
Bao S-G, Shi J-X, Luo F, Ding B, Hao J-Y, Xie X-D, Sun S-J. Overexpression of Sorghum WINL1 gene confers drought tolerance in Arabidopsis thaliana through the regulation of cuticular biosynthesis. Plant Cell Tissue Organ Cult. 2017;128(2):347–56. https://doi.org/10.1007/s11240-016-1114-2.
Article
CAS
Google Scholar
Licausi F, Ohme-Takagi M, Perata P. APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 2013;199(3):639–49. https://doi.org/10.1111/nph.12291.
Article
CAS
PubMed
Google Scholar
Lee SY, Hwang EY, Seok HY, Tarte VN, Jeong MS, Jang SB, Moon YH. Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Rep. 2015;34(2):223–31. https://doi.org/10.1007/s00299-014-1701-9.
Article
CAS
PubMed
Google Scholar
Sazegari S, Niazi A, Ahmadi FS. A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes. Bioinformation. 2015;11(2):101–6. https://doi.org/10.6026/97320630011101.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Xia X, Yin W. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commun. 2009;378(3):483–7. https://doi.org/10.1016/j.bbrc.2008.11.071.
Article
CAS
PubMed
Google Scholar
Grivet L, Arruda P. Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol. 2002;5(2):122–7. https://doi.org/10.1016/s1369-5266(02)00234-0.
Article
CAS
PubMed
Google Scholar
Lam E, Shine J, Silva JD, Lawton M, Bonos S, Calvino M, Carrer H, Silva-Filho MC, Glynn N, Helsel Z. Improving sugarcane for biofuel: engineering for an even better feedstock. GCB Bioenergy. 2009;1(3):251–5.
Article
CAS
Google Scholar
Azevedo RA, Carvalho RF, Cia MC, Gratão PL. Sugarcane under pressure: An overview of biochemical and physiological studies of abiotic stress. Trop Plant Biol. 2011;4(1):42–51. https://doi.org/10.1007/s12042-011-9067-4.
Article
CAS
Google Scholar
Manoj VM, Anunanthini P, Swathik PC, Dharshini S, Ashwin Narayan J, et al. Comparative analysis of glyoxalase pathway genes in Erianthus arundinaceus and commercial sugarcane hybrid under salinity and drought conditions. BMC Genomics. 2019;19(Suppl 9):986. https://doi.org/10.1186/s12864-018-5349-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet. 2018;50(11):1565–73. https://doi.org/10.1038/s41588-018-0237-2.
Article
CAS
PubMed
Google Scholar
Wang P, Moore BM, Panchy NL, Meng F, Lehti-Shiu MD, Shiu SH. Factors influencing gene family size variation among related species in a plant family, Solanaceae. Genome Biol Evol. 2018;10(10):2596–613. https://doi.org/10.1093/gbe/evy193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du H, Huang M, Zhang Z, Cheng S. Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response. Euphytica. 2014;198(1):115–26.
Article
CAS
Google Scholar
Zhuang J, Cai B, Peng RH, Zhu B, Jin XF, Xue Y, Gao F, Fu XY, Tian YS, Zhao W, et al. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun. 2008;371(3):468–74. https://doi.org/10.1016/j.bbrc.2008.04.087.
Article
CAS
PubMed
Google Scholar
Zhuang J, Chen JM, Yao QH, Xiong F, Sun CC, Zhou XR, Zhang J, Xiong AS. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Mol Biol Rep. 2011;38(2):745–53. https://doi.org/10.1007/s11033-010-0162-7.
Article
CAS
PubMed
Google Scholar
Lin H, Zhu W, Silva JC, Gu X, Buell CR. Intron gain and loss in segmentally duplicated genes in rice. Genome Biol. 2006;7(5):R41. https://doi.org/10.1186/gb-2006-7-5-r41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu YL, Cho Y, Cox JC, Palmer JD. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature. 1998;394(6694):671–4. https://doi.org/10.1038/29286.
Article
CAS
PubMed
Google Scholar
Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, Allen AM, McKenzie N, Kramer M, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–10. https://doi.org/10.1038/nature11650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu ZS, Chen M, Li LC, Ma YZ. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol. 2011;53(7):570–85. https://doi.org/10.1111/j.1744-7909.2011.01062.x.
Article
CAS
PubMed
Google Scholar
Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J. 2010;8(4):476–88. https://doi.org/10.1111/j.1467-7652.2009.00492.x.
Article
CAS
PubMed
Google Scholar
Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R. Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS One. 2015;10(6):e0127831. https://doi.org/10.1371/journal.pone.0127831.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-a response regulator of cytokinin signaling. Plant J. 2011;67(3):472–84. https://doi.org/10.1111/j.1365-313X.2011.04610.x.
Article
CAS
PubMed
Google Scholar
Shukla RK, Raha S, Tripathi V, Chattopadhyay D. Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol. 2006;142(1):113–23. https://doi.org/10.1104/pp.106.081752.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai Y, Wang Y, Li Y, Lei T, Yan F, Su L, Li X, Zhao Y, Sun X, Li J, et al. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene. 2013;513(1):174–83. https://doi.org/10.1016/j.gene.2012.10.018.
Article
CAS
PubMed
Google Scholar
Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol. 2006;61(6):897–915. https://doi.org/10.1007/s11103-006-0057-0.
Article
CAS
PubMed
Google Scholar
Dong W, Ai X, Xu F, Quan T, Liu S, Xia G. Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene. 2012;511(1):38–45. https://doi.org/10.1016/j.gene.2012.09.039.
Article
CAS
PubMed
Google Scholar
Abogadallah GM, Nada RM, Malinowski R, Quick P. Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta. 2011;233(6):1265–76. https://doi.org/10.1007/s00425-011-1382-3.
Article
CAS
PubMed
Google Scholar
Jin X, Xue Y, Wang R, Xu R, Bian L, Zhu B, Han H, Peng R, Yao Q. Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep. 2013;40(2):1743–52. https://doi.org/10.1007/s11033-012-2228-1.
Article
CAS
PubMed
Google Scholar
Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 2007;143(4):1739–51. https://doi.org/10.1104/pp.106.094532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Z, Nolan TM, Jiang H, Yin Y. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci. 2019;10:228. https://doi.org/10.3389/fpls.2019.00228.
Article
PubMed
PubMed Central
Google Scholar
Meng LS, Wang ZB, Yao SQ, Liu A. The ARF2-ANT-COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. J Cell Sci. 2015;128(21):3922–32. https://doi.org/10.1242/jcs.171207.
Article
CAS
PubMed
Google Scholar
Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 2015;20(4):219–29. https://doi.org/10.1016/j.tplants.2015.02.001.
Article
CAS
PubMed
Google Scholar
Müller M, Munné-Bosch S. Ethylene response factors. A key regulatory hub in hormone and stress signaling. Plant Physiol. 2015;169(1):32–41. https://doi.org/10.1104/pp.15.00677.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao JJ, Chen HW, Ma B, Zhang WK, Chen SY, Zhang JS. The role of ethylene in plants under salinity stress. Front Plant Sci. 2015;6:1059. https://doi.org/10.3389/fpls.2015.01059.
Article
PubMed
PubMed Central
Google Scholar
Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, Jiang H, Guo H, Lin HY, Li L, et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun. 2017;8:14573. https://doi.org/10.1038/ncomms14573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, Yin Y. The AP2/ERF transcription factor TINY modulates Brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell. 2019;31(8):1788–806. https://doi.org/10.1105/tpc.18.00918.
Article
CAS
PubMed
PubMed Central
Google Scholar
Generozova IP, Maevskaya SN, Shugaev AG. The inhibition of mitochondrial metabolic activity in etiolated pea seedlings under water stress. Russ J Plant Physiol. 2009;56(1):38–44. https://doi.org/10.1134/S1021443709010063.
Article
CAS
Google Scholar
Zhang H, Li A, Zhang Z, Huang Z, Lu P, Zhang D, Liu X, Zhang ZF, Huang R. Ethylene response factor TERF1, regulated by ETHYLENE-INSENSITIVE3-like factors, functions in reactive oxygen species (ROS) scavenging in tobacco (Nicotiana tabacum L.). Sci Rep. 2016;6:29948. https://doi.org/10.1038/srep29948.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi X, Gupta S, Rashotte AM. Characterization of two tomato AP2/ERF genes, SlCRF1 and SlCRF2 in hormone and stress responses. Plant Cell Rep. 2014;33(1):35–45. https://doi.org/10.1007/s00299-013-1510-6.
Article
CAS
PubMed
Google Scholar
Zwack PJ, De Clercq I, Howton TC, Hallmark HT, Hurny A, Keshishian EA, Parish AM, Benkova E, Mukhtar MS, Van Breusegem F, et al. Cytokinin response factor 6 represses Cytokinin-associated genes during oxidative stress. Plant Physiol. 2016;172(2):1249–58. https://doi.org/10.1104/pp.16.00415.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8. https://doi.org/10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. https://doi.org/10.1093/molbev/mst197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–8. https://doi.org/10.1093/nar/gkp335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7. https://doi.org/10.1093/bioinformatics/btu817.
Article
PubMed
Google Scholar
Chen C, Chen H, Zhang Y, Hannah R, Margaret H, Yehua H, Rui X. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Article
CAS
PubMed
Google Scholar
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. https://doi.org/10.1093/nar/gkr1293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics. 2010;8(1):77–80. https://doi.org/10.1016/s1672-0229(10)60008-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5.
Article
CAS
PubMed
Google Scholar
Ijaz S, Rana IA, Khan IA, Saleem M. Establishment of an in vitro regeneration system for genetic transformation of selected sugarcane genotypes. Genet Mol Res. 2012;11(1):512–30. https://doi.org/10.4238/2012.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar