Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, et al. Architecture of the human regulatory network derived from ENCODE data. Nature. 2012;489(7414):91–100.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang AP, Liu LG, Chen MM, Liu F, You H, Liu L, et al. Integrated analysis of 10 lymphoma datasets identifies E2F8 as a key regulator in Burkitt's lymphoma and mantle cell lymphoma. Am J Transl Res. 2019;11(7):4382–96.
CAS
PubMed Central
PubMed
Google Scholar
Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2010;12:56.
Article
CAS
Google Scholar
Duan Y, Tan Z, Yang M, Li J, Liu C, Wang C, et al. PC-3-Derived Exosomes Inhibit Osteoclast Differentiation by Downregulating miR-214 and Blocking NF-κB Signaling Pathway. Biomed Res Int. 2019;2019:8650846.
PubMed Central
PubMed
Google Scholar
Zhang D, Xia J. Somatic synonymous mutations in regulatory elements contribute to the genetic aetiology of melanoma. BMC Med Genet. 2020;13(Suppl 5):43.
CAS
Google Scholar
Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom of crowds for robust gene network inference. Nat Methods. 2012;9(8):796–804.
Article
CAS
PubMed Central
PubMed
Google Scholar
Belliveau NM, Barnes SL, Ireland WT, Jones DL, Sweredoski MJ, Moradian A, et al. Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria. Proc Natl Acad Sci. 2018;115(21):E4796–E805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuffner R, Petri T, Tavakkolkhah P, Windhager L, Zimmer R. Inferring gene regulatory networks by ANOVA. Bioinformatics. 2012;28(10):1376–82.
Article
CAS
PubMed
Google Scholar
Whittaker J. Graphical Models in Applied Multivariate Statistics1990 4/1/1990.
Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7(3–4):601–20.
Article
CAS
PubMed
Google Scholar
Lachmann A, Giorgi FM, Lopez G, Califano A. ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics. 2016;32(14):2233–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ma S, Gong Q, Bohnert HJ. An Arabidopsis gene network based on the graphical Gaussian model. Genome Res. 2007;17(11):1614–25.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tian D, Gu Q, Ma J. Identifying gene regulatory network rewiring using latent differential graphical models. Nucleic Acids Res. 2016;44(17):e140.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gendelman R, Xing H, Mirzoeva OK, Sarde P, Curtis C, Feiler HS, et al. Bayesian network inference modeling identifies TRIB1 as a novel regulator of cell-cycle progression and survival in Cancer cells. Cancer Res. 2017;77(7):1575–85.
Article
CAS
PubMed Central
PubMed
Google Scholar
Siahpirani AF, Roy S. A prior-based integrative framework for functional transcriptional regulatory network inference. Nucleic Acids Res. 2017;45(4):e21.
Article
PubMed
Google Scholar
Luo Y, Mao C, Yang Y, Wang F, Ahmad FS, Arnett D, et al. Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization. Bioinformatics. 2018;35(8):1395–403.
Article
PubMed Central
CAS
Google Scholar
Azad AKM, Lawen A, Keith JM. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer. PLoS One. 2017;12(3):e0173331.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu F, Zhang S-W, Guo W-F, Wei Z-G, Chen L. Inference of gene regulatory network based on local Bayesian networks. PLoS Comput Biol. 2016;12(8):e1005024.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, et al. Detecting novel associations in large data sets. Science. 2011;334(6062):1518–24.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cover TM, Thomas JA. Elements of information theory. 2nd ed. New Jersey: Wiley-Interscience; 2006.
Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;20;7 Suppl 1(Suppl 1):S7.
Meyer PE, Kontos K, Lafitte F, Bontempi G. Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol. 2007;Article ID:79879.
Liu W, Zhu W, Liao B, Chen HW, Ren SQ, Cai LJ. Improving gene regulatory network structure using redundancy reduction in the MRNET algorithm. RSC Adv. 2017;7(37):23222–33.
Article
Google Scholar
Zhao J, Zhou Y, Zhang X, Chen L. Part mutual information for quantifying direct associations in networks. Proc National Acad Sci USA. 2016;113(18):5130–5.
Article
CAS
Google Scholar
Janzing D, Balduzzi D, Grosse-Wentrup M, Schölkopf B. Quantifying causal influences. Ann Stat. 2013;41(5):2324–58.
Article
Google Scholar
Zhang X, Zhao J, Hao JK, Zhao XM, Chen L. Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks. Nucleic Acids Res. 2015;43(5):e31.
Article
CAS
PubMed
Google Scholar
Gao Y, Yurkovich JT, Seo SW, Kabimoldayev I, Dräger A, Chen K, et al. Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Research. 2018:gky752-gky.
Geeven G, van Kesteren RE, Smit AB, de Gunst MC. Identification of context-specific gene regulatory networks with GEMULA-gene expression modeling using LAsso. Bioinformatics. 2012;28(2):214–21.
Article
CAS
PubMed
Google Scholar
Haury AC, Mordelet F, Vera-Licona P, Vert JP. TIGRESS: trustful inference of gene REgulation using stability selection. BMC Syst Biol. 2012;6(1):145.
Article
PubMed Central
PubMed
Google Scholar
Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9):e12776.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yue Z, Chu X, Xia J. PredCID: prediction of driver frameshift indels in human cancer. Brief Bioinform. 2020. https://doi.org/10.1093/bib/bbaa119.
Wang D, Kong S. A classification-oriented dictionary learning model: explicitly learning the particularity and commonality across categories. Pattern Recogn. 2014;47(2):885–98.
Article
Google Scholar
Tosic I, Frossard P. Dictionary learning. IEEE Signal Process Mag. 2011;28(2):27–38.
Article
Google Scholar
Jiang Z, Lin Z, Davis LS. Label Consistent K-SVD: Learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell. 2013;35(11):2651–64.
Article
PubMed
Google Scholar
Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5(1):54–66.
Article
CAS
Google Scholar
Das PM, Singal R. DNA methylation and Cancer. J Clin Oncol. 2004;22(22):4632–42.
Article
CAS
PubMed
Google Scholar
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.
Article
CAS
PubMed
Google Scholar
Zhou T, Yan G, Wang B-H. Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys Rev E. 2005;71(4):046141.
Article
CAS
Google Scholar
Saramäki J, Kivelä M, Onnela J-P, Kaski K, Kertész J. Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E. 2007;75(2):027105.
Article
CAS
Google Scholar
Yates PR, Atherton GT, Deed RW, Norton JD, Sharrocks AD. Id helix–loop–helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J. 1999;18(4):968–76.
Article
CAS
PubMed Central
PubMed
Google Scholar
Qi L, Saberi M, Zmuda E, Wang Y, Altarejos J, Zhang X, et al. Adipocyte CREB Promotes Insulin Resistance in Obesity. Cell Metabolism 9(3):277–86.
Kim H-J, Hong JM, Yoon K-A, Kim N, Cho D-W, Choi J-Y, et al. Early growth response 2 negatively modulates osteoclast differentiation through upregulation of id helix–loop–helix proteins. Bone. 2012;51(4):643–50.
Article
CAS
PubMed
Google Scholar
Nishimori H, Sasaki Y, Yoshida K, Irifune H, Zembutsu H, Tanaka T, et al. The Id2 gene is a novel target of transcriptional activation by EWS-ETS fusion proteins in Ewing family tumors. Oncogene. 2002;21(54):8302–9.
Article
CAS
PubMed
Google Scholar
DiVito KA, Simbulan-Rosenthal CM, Chen Y-S, Trabosh VA, Rosenthal DS. Id2, Id3 and Id4 overcome a Smad7-mediated block in tumorigenesis, generating TGF-β-independent melanoma. Carcinogenesis. 2014;35(4):951–8.
Article
CAS
PubMed
Google Scholar
Shi Q, Zhong YS, Ren Z, Li QL, Zhou PH, Xu MD, et al. Analysis of the role of the BMP7-Smad4-Id2 signaling pathway in SW480 colorectal carcinoma cells. Mol Med Rep. 2011;4(4):627–31.
CAS
PubMed
Google Scholar
Li HS, Yang CY, Nallaparaju KC, Zhang H, Liu Y-J, Goldrath AW, et al. The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development. Blood. 2012;120(22):4363–73.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sun M, Kee BL. Lnc'ing Id2 to ILC1. Immunity. 2017;47(3):389–90.
Article
CAS
PubMed
Google Scholar
Marbach D, Prill R, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci U S A. 2010;107:6286–91.
Article
CAS
PubMed Central
PubMed
Google Scholar
De Andrade JP, Park JM, Gu VW, Woodfield GW, Kulak MV, Lorenzen AW, et al. EGFR is regulated by TFAP2C in luminal breast cancer and is a target for Vandetanib. Mol Cancer Ther. 2016;15(3):503–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Selamat SA, Chung BS, Girard L, Zhang W, Zhang Y, Campan M, et al. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res. 2012;22(7):1197–211.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rubinstein R, Bruckstein AM, Elad M. Dictionaries for sparse representation modeling. Proc IEEE. 2010;98(6):1045–57.
Article
Google Scholar
Hastie T, Tibshirani R, Friedman J, Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell. 2005;27(2):83–5.
Google Scholar
Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000;13(4–5):411–30.
Article
PubMed
Google Scholar
Liao JC, Boscolo R, Yang Y-L, Tran LM, Sabatti C, Roychowdhury VP. Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci. 2003;100(26):15522–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang C, Ding Z, Hung YS, Fung PCW. Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data. Bioinformatics. 2008;24(11):1349–58.
Article
CAS
PubMed
Google Scholar
Boscolo R, Sabatti C, Liao JC, Roychowdhury VP. A generalized framework for network component analysis. IEEE/ACM Transactions Computational Biol Bioinformatics. 2005;2(4):289–301.
Article
CAS
Google Scholar
Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet. 2006;7(1):55–65.
Article
CAS
PubMed
Google Scholar
Cheng N, Li M, Zhao L, Zhang B, Yang Y, Zheng CH, et al. Comparison and integration of computational methods for deleterious synonymous mutation prediction. Brief Bioinform. 2020;21(3):970–81.
Article
PubMed
Google Scholar
Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics. 2011;27(16):2263–70.
Article
CAS
PubMed
Google Scholar
Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muñiz-Rascado L, Solano-Lira H, et al. RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor units). Nucleic Acids Res. 2011;39(Database issue):D98–105.
Article
CAS
PubMed
Google Scholar
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, et al. Transcriptional regulatory code of a eukaryotic genome. Nature. 2004;431(7004):99–104.
Article
CAS
PubMed Central
PubMed
Google Scholar
MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics. 2006;7:14.
Article
CAS
Google Scholar
Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu Y, et al. The UCSC genome browser database. Nucleic Acids Res. 2003;31(1):51–4.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jiang C, Xuan Z, Zhao F, Zhang MQ. TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res. 2007;35(suppl 1):D137–D40.
Article
CAS
PubMed Central
PubMed
Google Scholar