Fischer H, Ulbrich F. Chromosomes of the Murrah buffalo and its crossbreds with the Asiatic swamp buffalo (Bubalus bubalis). Z Tierzücht Züchtungsbiol. 1967;84(1–4):110–4.
Google Scholar
Sun T, Shen J, Achilli A, Chen N, Chen Q, Dang R, Zheng Z, Zhang H, Zhang X, Wang S, et al. Genomic analyses reveal distinct genetic architectures and selective pressures in buffaloes. GigaScience. 2020;9(2).
Zeng L, Chen N, Ning Q, Yao Y, Chen H, Dang R, Zhang H, Lei C. PRLH and SOD1 gene variations associated with heat tolerance in Chinese cattle. Anim Genet. 2018;49(5):447–51.
Article
CAS
PubMed
Google Scholar
Resources CNCoAG: Animal genetic RESOURCES in China-bovines: China agriculture press; 2011.
Google Scholar
Iamartino D, Nicolazzi EL, Van Tassell CP, Reecy JM, Fritz-Waters ER, Koltes JE, Biffani S, Sonstegard TS, Schroeder SG, Ajmone-Marsan P. Design and validation of a 90K SNP genotyping assay for the water buffalo (Bubalus bubalis). PLoS One. 2017;12(10):e0185220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mokhber M, Moradi-Shahrbabak M, Sadeghi M, Moradi-Shahrbabak H, Stella A, Nicolzzi E, Rahmaninia J, Williams JL. A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genomics. 2018;19(1):449.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghoreishifar SM, Moradi-Shahrbabak H, Fallahi MH, Jalil Sarghale A, Moradi-Shahrbabak M, Abdollahi-Arpanahi R, Khansefid M. Genomic measures of inbreeding coefficients and genome-wide scan for runs of homozygosity islands in Iranian river buffalo, Bubalus bubalis. BMC Genet. 2020;21(1):16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu JJ, Liang AX, Campanile G, Plastow G, Zhang C, Wang Z, Salzano A, Gasparrini B, Cassandro M, Yang LG. Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo. J Dairy Sci. 2018;101(1):433–44.
Article
CAS
PubMed
Google Scholar
Whitacre LK, Hoff JL, Schnabel RD, Albarella S, Ciotola F, Peretti V, Strozzi F, Ferrandi C, Ramunno L, Sonstegard TS, et al. Elucidating the genetic basis of an oligogenic birth defect using whole genome sequence data in a non-model organism, Bubalus bubalis. Sci Rep. 2017;7:39719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet. 2009;10(9):639–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubin C-J, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, Jiang L, Ingman M, Sharpe T, Ka S, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464(7288):587–91.
Article
CAS
PubMed
Google Scholar
Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449:913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grossman SR, Shlyakhter I, Karlsson EK, Byrne EH, Morales S, Frieden G, Hostetter E, Angelino E, Garber M, Zuk O, et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science. 2010;327(5967):883–6.
Article
CAS
PubMed
Google Scholar
Mason SD, Howlett RA, Kim MJ, Olfert IM, Hogan MC, McNulty W, Hickey RP, Wagner PD, Kahn CR, Giordano FJ, et al. Loss of skeletal muscle HIF-1alpha results in altered exercise endurance. PLoS Biol. 2004;2(10):e288.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kinnunen S, Atalay M, Hyyppä S, Lehmuskero A, Hänninen O, Oksala N. Effects of prolonged exercise on oxidative stress and antioxidant defense in endurance horse. J Sports Sci Med. 2005;4(4):415–21.
PubMed
PubMed Central
Google Scholar
Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol Endocrinol Metab. 1988;254(3):E248–59.
Article
CAS
Google Scholar
Richter EA, Derave W, Wojtaszewski JFP. Glucose, exercise and insulin: emerging concepts. J Physiol. 2001;535(2):313–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radom-Aizik S, Zaldivar F, Haddad F, Cooper DM. Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. J Appl Physiol. 2013;114(5):628–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim H-A, Kim M-C, Kim N-Y, Ryu D-Y, Lee H-S, Kim Y. Integrated analysis of microRNA and mRNA expressions in peripheral blood leukocytes of Warmblood horses before and after exercise. J Vet Sci. 2018;19(1):99–106.
Article
PubMed
PubMed Central
Google Scholar
Basso C, Corrado D, Marcus FI, Nava A, Thiene G. Arrhythmogenic right ventricular cardiomyopathy. Lancet. 2009;373(9671):1289–300.
Article
PubMed
Google Scholar
Freel KM, Morrison LR, Thompson H, Else RW. Arrhythmogenic right ventricular cardiomyopathy as a cause of unexpected cardiac death in two horses. Vet Rec Case Rep. 2013;1(1):ec3000.
Article
Google Scholar
Sawant Abhishek C, Bhonsale A, te Riele Anneline SJM, Tichnell C, Murray B, Russell Stuart D, Tandri H, Tedford Ryan J, Judge Daniel P, Calkins H, et al. Exercise has a Disproportionate Role in the Pathogenesis of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy in Patients Without Desmosomal Mutations. J Am Heart Assoc. 3(6):e001471.
Kusakabe T, Motoki K, Hori K. Mode of interactions of human Aldolase Isozymes with cytoskeletons. Arch Biochem Biophys. 1997;344(1):184–93.
Article
CAS
PubMed
Google Scholar
Harris SJ, Winzor DJ. Enzyme kinetic evidence of active-site involvement in the interaction between aldolase and muscle myofibrils. Biochim Biophys Acta Protein Struct Mol Enzymol. 1987;911(1):121–6.
Article
CAS
Google Scholar
Arnold H, Pette D. Binding of glycolytic enzymes to structure proteins of the muscle. Eur J Biochem. 1968;6(2):163–71.
Article
CAS
PubMed
Google Scholar
Tochio T, Tanaka H, Nakata S, Hosoya H. Fructose-1,6-bisphosphate aldolase a is involved in HaCaT cell migration by inducing lamellipodia formation. J Dermatol Sci. 2010;58(2):123–9.
Article
CAS
PubMed
Google Scholar
Hu H, Juvekar A, Lyssiotis Costas A, Lien Evan C, Albeck John G, Oh D, Varma G, Hung Yin P, Ullas S, Lauring J, et al. Phosphoinositide 3-kinase regulates glycolysis through mobilization of Aldolase from the actin cytoskeleton. Cell. 2016;164(3):433–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carr D, Knull H. Aldolase-tubulin interactions: removal of tubulin C terminals impairs interactions. Biochem Biophys Res Commun. 1993;195(1):289–93.
Article
CAS
PubMed
Google Scholar
Walsh JL, Knull HR. Heteromerous interactions among glycolytic enzymes and of glycolytic enzymes with F-actin: effects of poly (ethylene glycol). Biochim Biophys Acta Protein Struct Mol Enzymol. 1988;952:83–91.
Article
CAS
Google Scholar
Clarke FM, Masters CJ. On the association of glycolytic enzymes with structural proteins of skeletal muscle. Biochim Biophys Acta. 1975;381(1):37–46.
Article
CAS
PubMed
Google Scholar
Begue G, Raue U, Jemiolo B, Trappe S. DNA methylation assessment from human slow- and fast-twitch skeletal muscle fibers. J Appl Physiol (Bethesda, Md : 1985). 2017;122(4):952–67.
Article
CAS
Google Scholar
Trenerry MK, Carey KA, Ward AC, Cameron-Smith D. STAT3 signaling is activated in human skeletal muscle following acute resistance exercise. J Appl Physiol. 2007;102(4):1483–9.
Article
CAS
PubMed
Google Scholar
Muslin AJ. Akt2: a critical regulator of Cardiomyocyte survival and metabolism. Pediatr Cardiol. 2011;32(3):317–22.
Article
PubMed
Google Scholar
Volland C, Bremer S, Hellenkamp K, Hartmann N, Dybkova N, Khadjeh S, Kutschenko A, Liebetanz D, Wagner S, Unsöld B, et al. Enhanced cardiac TBC1D10C expression lowers heart rate and enhances exercise capacity and survival. Sci Rep. 2016;6(1):33853.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivanov SV, Ward JM, Tessarollo L, McAreavey D, Sachdev V, Fananapazir L, Banks MK, Morris N, Djurickovic D, Devor-Henneman DE, et al. Cerebellar Ataxia, seizures, premature death, and cardiac abnormalities in mice with targeted disruption of the Cacna2d2 gene. Am J Pathol. 2004;165(3):1007–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanazawa Y, Nagano M, Koinuma S, Sujino M, Minami Y, Sugiyo S, Takeda I, Shigeyoshi Y. Basement membrane recovery process in rat soleus muscle after exercise-induced muscle injury. Connect Tissue Res. 2020:1–12.
Mayosi Bongani M, Fish M, Shaboodien G, Mastantuono E, Kraus S, Wieland T, Kotta M-C, Chin A, Laing N, Ntusi Ntobeko BA, et al. Identification of cadherin 2 (CDH2) mutations in Arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2017;10(2):e001605.
PubMed
Google Scholar
Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol. 2006;18(4):207–13.
Article
CAS
PubMed
Google Scholar
Tarlinton D, Light A, Metcalf D, Harvey RP, Robb L. Architectural defects in the spleens of Nkx2-3-deficient mice are intrinsic and associated with defects in both B cell maturation and T cell-dependent immune responses. J Immunol. 2003;170(8):4002.
Article
CAS
PubMed
Google Scholar
Alpay F, Zare Y, Kamalludin MH, Huang X, Shi X, Shook GE, Collins MT, Kirkpatrick BW. Genome-wide association study of susceptibility to infection by Mycobacterium avium subspecies paratuberculosis in Holstein cattle. PLoS One. 2014;9(12):e111704.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marino R, Capoferri R, Panelli S, Minozzi G, Strozzi F, Trevisi E, Snel GGM, Ajmone-Marsan P, Williams JL. Johne’s disease in cattle: an in vitro model to study early response to infection of Mycobacterium avium subsp. paratuberculosis using RNA-seq. Mol Immunol. 2017;91:259–71.
Article
CAS
PubMed
Google Scholar
Neibergs HL, Settles ML, Whitlock RH, Taylor JF. GSEA-SNP identifies genes associated with Johne’s disease in cattle. Mamm Genome. 2010;21(7):419–25.
Article
CAS
PubMed
Google Scholar
Guarini AR, Lourenco DAL, Brito LF, Sargolzaei M, Baes CF, Miglior F, Misztal I, Schenkel FS. Genetics and genomics of reproductive disorders in Canadian Holstein cattle. J Dairy Sci. 2019;102(2):1341–53.
Article
CAS
PubMed
Google Scholar
Paylor R, Hirotsune S, Gambello MJ, Yuva-Paylor L, Crawley JN, Wynshaw-Boris A. Impaired learning and motor behavior in heterozygous Pafah1b1 (Lis1) mutant mice. Learn Mem. 1999;6(5):521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R, Nopola-Hemmi J, Kääriäinen H, Kere J. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genet. 2005;1(4):e50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim J, Williams FJ, Dreger DL, Plassais J, Davis BW, Parker HG, Ostrander EA. Genetic selection of athletic success in sport-hunting dogs. Proc Natl Acad Sci U S A. 2018;115(30):E7212–e7221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koide T, Banno M, Aleksic B, Yamashita S, Kikuchi T, Kohmura K, Adachi Y, Kawano N, Kushima I, Nakamura Y, et al. Common variants in MAGI2 gene are associated with increased risk for cognitive impairment in schizophrenic patients. PLoS One. 2012;7(5):e36836.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwartz MK, Seeberg PH, Worley PF, Kalivas PW. Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. Genes Brain Behav. 2005;4(5):273–88.
Article
CAS
PubMed
Google Scholar
Deng X, Shibata H, Takeuchi N, Rachi S, Sakai M, Ninomiya H, Iwata N, Ozaki N, Fukumaki Y. Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(3):271–8.
Article
CAS
PubMed
Google Scholar
Morar B, Dragović M, Waters FAV, Chandler D, Kalaydjieva L, Jablensky A. Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition. Mol Psychiatry. 2011;16(8):860–6.
Article
CAS
PubMed
Google Scholar
Münster-Wandowski A, Heilmann H, Bolduan F, Trimbuch T, Yanagawa Y, Vida I. Distinct Localization of SNAP47 Protein in GABAergic and Glutamatergic Neurons in the Mouse and the Rat Hippocampus. Front Neuroanat. 2017;11(56).
Terracciano A, Esko T, Sutin AR, de Moor MHM, Meirelles O, Zhu G, Tanaka T, Giegling I, Nutile T, Realo A, et al. Meta-analysis of genome-wide association studies identifies common variants in CTNNA2 associated with excitement-seeking. Transl Psychiatry. 2011;1(10):e49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez AF, Abe Y, Hong S, Molyneux K, Yarnell D, Löhr H, Driever W, Acosta MT, Arcos-Burgos M, Muenke M. An Ultraconserved brain-specific enhancer within ADGRL3 (LPHN3) underpins attention-deficit/hyperactivity disorder susceptibility. Biol Psychiatry. 2016;80(12):943–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plani-Lam JH-C, Chow T-C, Siu K-L, Chau WH, Ng M-HJ, Bao S, Ng CT, Sham P, Shum DK-Y, Ingley E, et al. PTPN21 exerts pro-neuronal survival and neuritic elongation via ErbB4/NRG3 signaling. Int J Biochem Cell Biol. 2015;61:53–62.
Article
CAS
PubMed
Google Scholar
Chen J, Lee G, Fanous AH, Zhao Z, Jia P, O'Neill A, Walsh D, Kendler KS, Chen X. The international schizophrenia C: two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia. Schizophr Res. 2011;131(1):43–51.
Article
PubMed
PubMed Central
Google Scholar
Guo Y, Qiu H, Xiao S, Wu Z, Yang M, Yang J, Ren J, Huang L. A genome-wide association study identifies genomic loci associated with backfat thickness, carcass weight, and body weight in two commercial pig populations. J Appl Genet. 2017;58(4):499–508.
Article
PubMed
Google Scholar
Sanchez M-P, Tribout T, Iannuccelli N, Bouffaud M, Servin B, Tenghe A, Dehais P, Muller N, Del Schneider MP, Mercat M-J, et al. A genome-wide association study of production traits in a commercial population of large white pigs: evidence of haplotypes affecting meat quality. Genet Sel Evol. 2014;46(1):12.
Article
PubMed
PubMed Central
Google Scholar
Hartati H, Utsunomiya YT, Sonstegard TS, Garcia JF, Jakaria J, Muladno M. Evidence of Bos javanicus x Bos indicus hybridization and major QTLs for birth weight in Indonesian Peranakan Ongole cattle. BMC Genet. 2015;16(1):75.
Article
PubMed
PubMed Central
CAS
Google Scholar
G. T. Pereira A, Utsunomiya YT, Milanesi M, RBP T, Carmo AS, HHR N, Carvalheiro R, Ajmone-Marsan P, Sonstegard TS, Sölkner J, et al. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth. PLoS One. 2016;11(7):e0158165.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taye M, Lee W, Jeon S, Yoon J, Dessie T, Hanotte O, Mwai OA, Kemp S, Cho S, Oh SJ, et al. Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm Genome. 2017;28(11):528–41.
Article
PubMed
Google Scholar
Lam S, Miglior F, Fonseca P, Seymour D, Asselstine V, Brito L, Schenkel F, Cánovas A. Identification of variants associated with divergent feed efficiency groups using multiple RNA-sequencing datasets from dairy and beef cattle; 2018.
Google Scholar
Chang T, Xia J, Xu L, Wang X, Zhu B, Zhang L, Gao X, Chen Y, Li J, Gao H. A genome-wide association study suggests several novel candidate genes for carcass traits in Chinese Simmental beef cattle. Anim Genet. 2018;49(4):312–6.
Article
CAS
PubMed
Google Scholar
Jiang Z, Michal JJ, Chen J, Daniels TF, Kunej T, Garcia MD, Gaskins CT, Busboom JR, Alexander LJ, Wright RW Jr, et al. Discovery of novel genetic networks associated with 19 economically important traits in beef cattle. Int J Biol Sci. 2009;5(6):528–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gholami M, Erbe M, Gärke C, Preisinger R, Weigend A, Weigend S, Simianer H. Population genomic analyses based on 1 million SNPs in commercial egg layers. PLoS One. 2014;9(4):e94509.
Article
PubMed
PubMed Central
Google Scholar
Messad F, Louveau I, Koffi B, Gilbert H, Gondret F. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs. BMC Genomics. 2019;20(1):659.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, Srinivasan BS, Barsh GS, Myers RM, Feldman MW, et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 2009;19(5):826–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Low WY, Tearle R, Bickhart DM, Rosen BD, Kingan SB, Swale T, Thibaud-Nissen F, Murphy TD, Young R, Lefevre L, et al. Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nat Commun. 2019;10(1):260.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev Genet. 2012;13(9):667–72.
Article
CAS
PubMed
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patterson N, Price AL, Reich D. Population structure and Eigenanalysis. PLoS Genet. 2006;2(12):e190.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shaun P, Benjamin N, Kathe TB, Lori T, Ferreira MAR, David B, Julian M, Pamela S, Bakker PIW, De DMJ. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007.
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population-structure. Evolution. 1984;38(6):1358–70.
CAS
PubMed
Google Scholar
Rubin C-J, Megens H-J, Martinez Barrio A, Maqbool K, Sayyab S, Schwochow D, Wang C, Carlborg Ö, Jern P, Jørgensen CB, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A. 2012;109(48):19529–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szpiech ZA, Hernandez RD. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol Biol Evol. 2014;31(10):2824–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81(5):1084–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG. Recent and ongoing selection in the human genome. Nat Rev Genet. 2007;8(11):857–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng K, Shi S, Wu CI. Compound tests for the detection of hitchhiking under positive selection. Mol Biol Evol. 2007;24(8):1898–908.
Article
CAS
PubMed
Google Scholar
Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet. 2019;51(5):885–95.
Article
CAS
PubMed
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C-Y, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(suppl_2):W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar