Cheng LB, Ying JJ, Yang JQ, Li Y, Hui LC, Li SY, et al. Activity and expression of ADP-glucose pyrophosphorylase during rhizome formation in lotus (Nelumbo nucifera Gaertn.). Bot Stud. 2016;9:57.
Google Scholar
Shen-Miller J. Sacred lotus, the long-living fruits of China antique. Seed Sci Res. 2002;12:131–43.
Article
CAS
Google Scholar
Ming R, VanBuren R, Liu YL, Yang M, Han YP, Li LT, et al. Genome of the Long living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol. 2013;14:R41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yadav SKS, Patral D, Singh S, Sarkar A, Panigrahil KCS. Uncovering the molecular signature underlying the light intensity-dependent root development in Arabidopsis thaliana. BMC Genomics. 2019;20:596.
Article
PubMed
PubMed Central
Google Scholar
Kelly JWG, Landhäusser SM, Chow PS. The impact of light quality and quantity on root-to-shoot ratio and root carbon reserves in aspen seedling stock. New For. 2015;46(4):527–45.
Article
Google Scholar
Wang F, Zhang L, Chen X, Wu X, Xiang X, Zhou J, Xia X, Shi K, Yu J, Foyer CH, Zhou YH. SlHY5 integrates temperature, light and hormone signaling to balance plant growth and cold tolerance. Plant Physiol. 2019;179:749–60.
Article
CAS
PubMed
Google Scholar
de Wit M, Galvão VC, Fankhauser C. Light-mediated hormonal regulation of plant growth and development. Annu Rev Plant Biol. 2016;67:513–53.
Article
PubMed
CAS
Google Scholar
Li B, Fan R, Guo S, Wang P, Zhu X, Fan Y, Chen Y, He K, Kumar A, Shi J, Wang Y, Li L, Hu Z, Song C-P. The Arabidopsis MYB transcription factor MYB111 modulates salt responses by regulating flavonoid biosynthesis. Environ Exp Bot. 2019a;166:103807.
Article
CAS
Google Scholar
Alabaid D, Blazquez M. Molecular interactions between light and hormone signaling to control plant growth. Plant Mol Biol. 2009;69:409–17.
Article
CAS
Google Scholar
Qu X, Cao B, Kang J, Wang X, Han X, Jiang W, Shi X, Zhang L, Cui L, Hu Z, Zhang Y, Wang G. Fine-tuning stomatal movement through small signaling peptides. Front Plant Sci. 2019;10:69.
Li C, Zheng L, Wang X, Hu Z, Zheng Y, Chen Q, Hao X, Xiao X, Wang X, Wang G, Zhang Y. Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. Plant Sci. 2019b;285:1–13.
Article
CAS
PubMed
Google Scholar
Burbach C, Markus K, Zhang Y, Schlicht M, Baluška F. Photophobic behavior of maize roots. Plant Signal Behav. 2012;7(7):874–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary rooelongation in Arabidopsis thaliana. Planta. 2006;224(5):995–1003.
Article
CAS
PubMed
Google Scholar
Kumari S, Yadav S, Patra D, Singh S, Sarkar AK, Panigrahi KCS. Uncovering the molecular signature underlying the light intensity-dependent root development in Arabidopsis thaliana. BMC Genomics. 2019;20:596.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ha JH, Kim JH, Kim SG, Sim HJ, Lee G, Halitschke R. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis. Plant J. 2018;94(5):790–8.
Article
CAS
PubMed
Google Scholar
Meng L, Song W, Liu S, Dong J, Zhang Y, Wang C. Light quality regulates lateral root development in tobacco seedlings by shifting Auxin distributions. J Plant Growth Regul. 2015;34(3):574–83.
Article
CAS
Google Scholar
Nagel KA, Schurr U, Walter A. Dynamics of root growth stimulation in Nicotiana tabacum in increasing light intensity. Plant Cell Environ. 2006;29(10):1936–45.
Article
CAS
PubMed
Google Scholar
Ken YW, Tomokazu KB, Frantisek B. Light-dependent control of redox balance and auxin biosynthesis in plant. Plant Signal Behav. 2014;9(6):e29522. https://doi.org/10.4161/psb.29522.
Koshiba T, Yamanchi K, Matsuyama H, Miyakado M, Sori I. Flavin-photosensitized production of indole-3-acetaldehyde from tryptophan. Tetrahedrom Lett. 1993;34:7603–6.
Article
CAS
Google Scholar
Della Rovere F, Fattorini L, D’Angeli S, Veloccia A, Falasca G, Altamura MM. Auxin and cytokinin control formation of the quiescent Centre in the adventitious root apex of Arabidopsis. Ann Bot. 2013;112:1395–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukaki H, Tasaka M. Hormone interactions during lateral root formation. Plant Mol Biol. 2009;69:437–49.
Article
CAS
PubMed
Google Scholar
Nag S, Saha K, Choudhuri MA. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J Plant Growth Regul. 2001;20:182–94.
Article
CAS
Google Scholar
Negi S, Sukumar P, Liu X, Cohen JD, Muday GK. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J. 2010;61:3–15.
Article
CAS
PubMed
Google Scholar
Visser E, Cohen JD, Barendse G, Blom C, Voesenek L. An ethylene-mediated increase in sensitivity to auxininduces adventitious root formation in flooded rumex palustris Sm. Plant Physiol. 1996;112:1687–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu HJ, Wang SF, Yu XB, Yu J, He XW, Zhang SL, et al. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J. 2005;43:47–56.
Article
PubMed
CAS
Google Scholar
Marchant A, Bhalerao R, Casimiro I, Eklöf J, Casero PJ, Bennett M, et al. AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell. 2002;14:589–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carraro N, Tisdale-Orr TE, Clouse RM, Knoller AS, Spicer R. Diversification and expression of the PIN, AUX/LAX, and ABCB families of putative auxin transporters in Populus. Front Plant Sci. 2012;3:17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahkami AH, Melzer M, Ghaffari MR, Pollmann S, Javid MG, Shahinnia F, Hajirzzaei MR, Druege U. Distribution of indole-3-acetic acid in petunia hybridashoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta. 2013;238:499–517.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sauer M, Balla J, Luschnig C, Wisniewska J, Reinöhl V, Friml J, et al. Canalization of auxin flow by aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 2006;20:2902–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu M, Zhu L, Shou HX, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in Rice. Plant Cell Physiol. 2005;46:1674–81.
Article
CAS
PubMed
Google Scholar
Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, Bellini C. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and MicroRNA abundance. Plant Cell. 2009;21:3119–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng LB, Jiang RZ, Yang JJ, Xu XY, Zeng HT, Li SY. Transcriptome profiling reveals an IAA-regulated response to adventitious roots formation in lotus seedling. Zeitschrift fur Nat. 2018;73(5–6):229–40.
CAS
Google Scholar
Cheng LB, Liu HY, Jiang RZ, Li SY. A proteomics analysis of adventitious root formation after leaf removal in lotus (Nelumbo nucifera Gaertn.). ZNC. 2018b;73:375–89.
CAS
Google Scholar
Falasca G, Zaghi D, Possenti M, Altamura MM. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep. 2004;23:17–25.
Article
CAS
PubMed
Google Scholar
Li SW, Leng Y, Feng L, Zeng XY. Involvement of abscisic acid in regulatin antioxidativedefensesystems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vignaradiata (L.)Wilczek] seedlings under cadmium stress. Environ Sci Pollut Res. 2014;21:525–37.
Article
CAS
Google Scholar
Kevers C, Hausman JF, Faivre-Rampant O, Evers D, Gaspar T. Hormonal control of adventitious rooting: progress and questions. J Appl Bot Angew Bot. 1997;71:71–9.
CAS
Google Scholar
Li SW, Xue L, Xu S, Feng H, An L. Mediators, genes and signaling in adventitious rooting. Bot Rev. 2009;75:230–47.
Article
Google Scholar
Rasmussen A, Hosseini SA, Hajirezaei MR, Druege U, Geelen D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J Exp Bot. 2015;66:1437–52.
Article
CAS
PubMed
Google Scholar
Teale WD, Paponov IA, Palme K. Auxin in action: signaling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol. 2006;7:847–59.
Article
CAS
PubMed
Google Scholar
Najafabadi AS, Khanahmadi M, Ebrahimi M, Moradi K, Behroozi P, Noormohammadi N. Effect of different quality of light on growth and production of secondary metabolites in adventitious root cultivation of Hypericum perforatum. Plant Signal Behav. 2019. https://doi.org/10.1080/15592324.2019;1640561.
Chen YM, Huang JZ, Hou TW, Pan C. Efects of light intensity and plant growth regulators on callus proliferation and shoot regeneration in the ornamental succulent Haworthia. Bot Stud. 2019;60:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cho KH, Laux VY, Wallace-Springer N, Clark DG, Folta KM, Colquhoun TA. Effects of light quality on vegetative cutting and in vitro propagation of coleus (Plectranthus scutellarioides). Hort. 2019;54:926–35.
Article
Google Scholar
Druege U, Hilo A, Pérez-Pérez JM, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei MR. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Ann Bot. 2019;123:929–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rapaka VK, Bessler B, Schreiner M, Druege U. Interplay between initial carbohydrate availability, current photosynthesis and adventitious root formation in Pelargonium cuttings. Plant Sci. 2005;168:1547–60.
Article
CAS
Google Scholar
Zerche S, Druege U. Nitrogen content determines adventitious rooting in Euphorbia pulcherrima under adequate light independently of pre-rooting carbohydrate depletion of cuttings. Sci Hortic. 2009;121:340–7.
Article
CAS
Google Scholar
Calvo-Polanco M, Senorans J, Zwiazek JJ. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flood. BMC Plant Biol. 2012;12:99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng LB, Han YY, Liu HY, Jiang RZ, Li SY. Transcriptomic analysis reveals ethylene’s regulation involved in adventitious roots formation in lotus (Nelumbo nucifera Gaertn.). Acta Physiol Plant. 2019;41:97.
Article
CAS
Google Scholar
Cheng LB, Liu HY, Han YY, Li SY. Transcriptome analysis of miRNAs expression reveals novel insights into adventitious root formation in lotus (Nelumbo nucifera Gaertn.). Mol Biol Rep. 2019;46:2893–905.
Article
CAS
Google Scholar
Xiao TW, Mi MM, Wang CY, Qian M, Chen YH, Zheng LQ, Zhang HS, Hu ZB, Shen ZG, Xia Y. A methionine-R-sulfoxide reductase, OsMSRB5, is required for rice defense against copper toxicity. Environ Exp Bot. 2018;153:45–53.
Article
CAS
Google Scholar
Cui F, Wu W, Wang K, Zhang Y, Hu Z, Brosché M, Liu S, Overmyer K. Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. J Exp Bot. 2019;70:5971–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ke YG, Abbas F, Zhou YW, Yu RC, Yue YC, Li XY, Yu YY, Fan YP. Genome-wide analysis and characterization of the aux/iaa family genes related to floral scent formation in Hedychium coronarium. Int J Mol Sci. 2019;20:3235.
Article
CAS
PubMed Central
Google Scholar
Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell. 2009;136:1005–16.
Article
CAS
PubMed
Google Scholar
Christopher J, Christopher M, Jennings R, Jones S, Fletcher S, Borrell A, et al. QTL for root angle and number in a population developed from bread wheats (Triticumaestivum) with contrasting adaptation to water-limited environments. Theor Appl Genet. 2013;126:1563–74.
Article
CAS
PubMed
Google Scholar
Rovere FD, Fattorini L, Angeli SD, Veloccia A, Duca SD, Cai G, et al. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers. Ann Bot. 2015;115:617–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, et al. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature. 2003;426:147–53.
Article
CAS
PubMed
Google Scholar
Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, et al. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell. 2005;17:1090–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R. Auxin transport promotes Arabidopsis lateral root nitiation. Plant Cell. 2001;13:843–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hobbie L, Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995;7:211–20.
Article
CAS
PubMed
Google Scholar
Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 2006;57:675–709.
Article
CAS
PubMed
Google Scholar
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot. 2014;65:799–807.
Article
CAS
PubMed
Google Scholar
Riou-Khamlichi C, Menges M, Healy JM, Murray JA. Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol. 2000;20:4513–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komaki S, Sugimoto K. Control of the plant cell cycle by developmental and environmental cues. Plant Cell Physiol. 2012;53:953–64.
Article
CAS
PubMed
Google Scholar
Cano-Delgado AI, Metzlaff K, Bevan MW. The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development. 2000;127:3395–405.
CAS
PubMed
Google Scholar
Le KC, Kim HH, Park SY. Modification of the droplet-vitrification method of cryopreservation to enhance survival rates of adventitious roots of Panax ginseng. Hortic Environ Biotechnol. 2019;60:501–10.
Article
CAS
Google Scholar
Gao Y, Wu CH, Piao XC, Han L, Gao R, Lian ML. Optimization of culture medium components and culture period for production of adventitious roots of Echinacea pallida (Nutt.). Plant Cell Tiss Org. 2018;135:299–307.
Article
CAS
Google Scholar
Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H. Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res. 2003;116:83–91.
Article
CAS
PubMed
Google Scholar
Kaur H, Kaur K, Gill GK. Modulation of sucrose and starch metabolism by salicylic acid induces thermotolerance in spring maize. Russ J Plant Physiol. 2019;66:771–7.
Article
CAS
Google Scholar
Zhang JH, Li CY, Wei ML, Ge YH, Tang Q, Xue WJ, Zhang SY, Wang WH, Lv JY. Effects of trisodium phosphate treatment after harvest on storage quality and sucrose metabolism in jujube fruit. 2019. J Sci Food Agric. 2019;99:5526–32.
Article
CAS
PubMed
Google Scholar
Chen YR, Ge YH, Zhao JR, Wei ML, Li CY, Hou JB, Cheng Y, Chen JX. Postharvest sodium nitroprusside treatment maintains storage quality of apple fruit by regulating sucrose metabolism. Postharvest Biol Technol. 2019;154:115–20.
Article
CAS
Google Scholar
Stepanova AN, Yun J, Likhacheva AV, Alonso JM. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell. 2007;19:2169–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhosale R, Boudolf V, Cuevas F, Lu R, Eekhout T, Hu ZB, et al. A spatiotemporal dna endoploidy map of the arabidopsis root reveals roles for the endocycle in root development and stress adaptation. Plant Cell. 2018;30:2330–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Hou MJ, Cao L, Xia Y, Shen ZG, Hu ZB. Glutathione S-transferases modulate Cu tolerance in Oryza sativa. Environ Exp Bot. 2018;155:313–20.
Article
CAS
Google Scholar
Jiao K, Li X, Guo Y, Guan Y, Guo W, Luo D, Hu, and Shen Z. Regulation of compound leaf development in mungbean (Vigna radiata L.) by cup-shaped copyledon/no apicalmeristem (cuc/nam) gene. Planta. 2019;249:765–74.
Article
CAS
PubMed
Google Scholar