Dong Y, Morrisnatschke SL, Lee KH. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep. 2011;28(3):529–42.
Article
CAS
PubMed
Google Scholar
Xu J, Wei K, Zhang G, Lei L, Yang D, Wang W, Han Q, Xia Y, Bi Y, Yang M, Li M. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: a review. J Ethnopharmacol. 2018;225:18–30.
Article
CAS
PubMed
Google Scholar
Zhang Y, Ji A, Xu Z, Luo H, Song J. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. Plant Mol Biol. 2019;100(1):83–93.
Article
CAS
PubMed
Google Scholar
Guo J, Ma X, Cai Y, Ma Y, Zhan Z, Zhou Y, Liu W, Guan M, Yang J, Cui G, Kang L, Yang L, Shen Y, Tang J, Lin H, Ma X, Jin B, Liu Z, Peters RJ, Zhao Z, Huang L. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. New Phytol. 2016;210(2):525–34.
Article
CAS
PubMed
Google Scholar
Pei T, Ma P, Ding K, Liu S, Jia Y, Ru M, Dong J, Liang Z. SmJAZ8 acts as a core repressor regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. J Exp Bot. 2018;69(7):1663–78.
Article
CAS
PubMed
Google Scholar
Petersen M. Rosmarinic acid: new aspects. Phytochem Rev. 2013;12(1):207–27.
Article
CAS
Google Scholar
Sun M, Shi M, Wang Y, Huang Q, Yuan T, Wang Q, Wang C, Zhou W, Kai G. The AP2/ERF transcription factor SmERF115 positively regulates the biosynthesis of phenolic acids in Salvia miltiorrhiza. J Exp Bot. 2018;70(1):243–54.
Article
CAS
Google Scholar
Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot. 2012;63(7):2809–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Z, Peters RJ, Weirather J, Luo H, Liao B, Zhang X, Zhu Y, Ji A, Zhang B, Hu S, Au K, Song J, Chen S. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J. 2015;82(6):951–61.
Article
CAS
PubMed
Google Scholar
Shani E, Weinstain R, Zhang Y, Castillejo C, Kaiserli E, Chory J, Tsien RY, Estelle M. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci U S A. 2012;110(12):4834–9.
Article
Google Scholar
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008;59(10):225–51.
Article
CAS
PubMed
Google Scholar
Colebrook EH, Thomas SG, Phillips AL, Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol. 2014;217(1):67–75.
Article
CAS
PubMed
Google Scholar
Claeys H, De Bodt SD, Inze D. Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci. 2014;19(4):231–9.
Article
CAS
PubMed
Google Scholar
Sun T. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol. 2011;21(9):R338–45.
Article
CAS
PubMed
Google Scholar
Hakoshima T. Structural basis of the specific interactions of GRAS family proteins. FEBS Lett. 2018;592(4):489–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Jones WT, Rikkerink EH. GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling. Biochem J. 2012;442(1):1–12.
Article
CAS
PubMed
Google Scholar
Murase K, Hirano Y, Sun TP, Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature. 2008;456(7221):459–63.
Article
CAS
PubMed
Google Scholar
Yoshida H, Hirano K, Sato T, Mitsuda N, Nomoto M, Maeo K, Koketsu E, Mitani R, Kawamura M, Ishiguro S, Tada Y, Ohme-Takagi M, Matsuoka M, Ueguchi-Tanaka M. DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins. Proc Natl Acad Sci U S A. 2014;111(9):7861–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heo JO, Chang KS, Kim IA, Lee MH, Lee SA, Song SK, Lee MM, Lim J. Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the Arabidopsis root. Proc Natl Acad Sci U S A. 2011;108(5):2166–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Ogawa M, Fleet CM, Zentella R, Hu J, Heo JO, Lim J, Kamiya Y, Yamaguchi S, Sun T. SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc Natl Acad Sci U S A. 2011;108(5):2160–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang J, Blilou I, Scheres B, Benfey PN. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science. 2007;316(5823):421–5.
Article
CAS
PubMed
Google Scholar
Lucas M, Swarup R, Paponov IA, Swarup K, Casimiro I, Lake D, Peret B, Zappala S, Mairhofer S, Whitworth M, Wang JH, Ljung K, Marchant A, Sandberg G, Holdsworth MJ, Palme K, Pridmore T, Mooney S, Bennett MJ. Short-root regulates primary, lateral, and adventitious root development in Arabidopsis. Plant Physiol. 2011;155(1):384–98.
Article
CAS
PubMed
Google Scholar
Torres-Galea P, Huang L, Chua N, Bolle C. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome a responses. Mol Gen Genomics. 2006;276(1):13–30.
Article
CAS
Google Scholar
Li W, Bai Z, Pei T, Yang D, Mao R, Zhang B, Liu C, Liang Z. SmGRAS1 and SmGRAS2 regulate the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Front Plant Sci. 2019;10:1367.
Article
PubMed
PubMed Central
Google Scholar
Li W, Xing B, Mao R, Bai Z, Yang D, Xu J, Liang Z. SmGRAS3 negatively responds to GA signaling while promotes tanshinones biosynthesis in Salvia miltiorrhiza. Ind Crop Prod. 2020;144:112004.
Article
CAS
Google Scholar
Gong X, Flores-Vergara MA, Hong J, Chu H, Lim J, Franks RG, Liu Z, Xu J. SEUSS integrates gibberellin signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate middle cortex formation in the Arabidopsis root. Plant Physiol. 2016;170(3):1675–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choe J, Kim B, Yoon EK, Jang S, Kim G, Dhar S, Lee SA, Lim J. Characterization of the GRAS transcription factor SCARECROW-LIKE 28’s role in Arabidopsis root growth. JPlant Biol. 2017;60(5):462–71.
Article
CAS
Google Scholar
Ribeiro DM, Araújo WL, Fernie AR, Schippers JHM, Bernd MR. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J Exp Bot. 2012;63(7):2769–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fambrini M, Mariotti L, Parlanti S, Salvini M, Pugliesi C. A GRAS-like gene of sunflower (Helianthus annuus L.) alters the gibberellin content and axillary meristem outgrowth in transgenic Arabidopsis plants. Plant Biol. 2015;17(6):1123–34.
Article
CAS
PubMed
Google Scholar
Livne S, Lor VS, Nir I, Eliaz N, Aharoni A, Olszewski NE, Eshed Y, Weiss D. Uncovering DELLA-independent gibberellin responses by characterizing new tomato procera mutants. Plant Cell. 2015;27(6):1579–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Wang B, Li H, Peng L, Ru M, Liang Z, Yan X, Zhu Y. Establishment of Salvia castanea Diels f. tomentosa Stib. Hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag(+), methyl jasmonate, and yeast extract elicitation. Protoplasma. 2016;253(1):1–14.
Article
Google Scholar
Liu L, Yang DF, Liang T, Zhang H, He Z, Liang Z. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots. Plant Cell Rep. 2016;35(9):1933–42.
Article
CAS
PubMed
Google Scholar
Mornya P, Cheng F. Effect of combined chilling and GA3 treatment on bud abortion in forced ‘Luoyanghong’ tree peony (Paeonia suffruticosa Andr.). Hortic Plant J. 2018;4(6):250–6.
Article
Google Scholar
Xu Z, Luo H, Ji A, Zhang X, Song J, Chen L. Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza. Front Plant Sci. 2016;7(100):1–10.
Google Scholar
Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26(1):136–8.
Article
PubMed
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–93.
Article
CAS
PubMed
Google Scholar
Yang Y, Hou S, Cui G, Chen S, Wei J, Huang L. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza. Mol Biol Rep. 2010;37(1):507–13.
Article
CAS
PubMed
Google Scholar
Xu W, Chen Z, Ahmed N, Han B, Cui Q, Liu A. Genome-wide identification, evolutionary analysis, and stress responses of the GRAS gene family in Castor beans. Int J Mol Sci. 2016;17(7):E1004.
Article
PubMed
CAS
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar