Xuan Y, Zhao HF, Guo XY, Ren J, Wang Y, Lu BY. Plant Cell Wall remodeling enzyme Xyloglucan Endotransglucosylase/hydrolase (XTH). Chin Agric Sci Bull. 2016;18:83–8.
Google Scholar
Thompson JE, Fry SC. Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J. 2001;26:23–34.
Article
CAS
PubMed
Google Scholar
Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ. Xyloglucan endotransglucosylase, a new wall-loosening enzyme activity from plants. Biochem J. 1992;282:821–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strohmeier M, Hrmova M, Fischer M, Harvey AJ, Fincher GB, Pleiss J. Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the poaceae. Protein Sci. 2004;13:3200–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Viborg AH, Terrapon N, Lombard V, Michel G, Czjzek M, Henrissat B, et al. A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). J Biol Chem. 2019. https://doi.org/10.1074/jbcRA119010619.
Baumann MJ, Eklof JM, Michel G, Kallas AM, Teeri TT, Czjzek M, et al. 3rd structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglucosylases: biological implications for cell wall metabolism. Plant Cell. 2007;19:1947–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rose JK, Braam J, Fry SC, Nishitani K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 2002;43:1421–35.
Article
CAS
PubMed
Google Scholar
Eklof JM, Brumer H. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol. 2010;153:456–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Behar H, Graham SW, Brumer H. Comprehensive cross-genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages. Plant J. 2018;95:1114–28.
Article
CAS
PubMed
Google Scholar
Michailidis G, Argiriou A, Darzentas N, Tsaftaris A. Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. J Plant Physiol. 2009;166:403–16.
Article
CAS
PubMed
Google Scholar
Yokoyama R, Yohei, Harada T, Hiwatashi Y, Hasebe M. Biological implications of the occurrence of 32 members of the XTH (xyloglucan endotransglucosylase/hydrolase) family of proteins in the bryophyte Physcomitrella patens. Plant J. 2010;64(4):645–56.
Article
CAS
PubMed
Google Scholar
Jiao C, Sørensen I, Sun X, Sun H, Behar H, Alseekh S, et al. The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell. 2020;181(5):1–15.
Article
CAS
Google Scholar
Yokoyama R, Nishitani KA. Comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol. 2001;42:1025–33.
Article
CAS
PubMed
Google Scholar
Yokoyama R, Rose JK, Nishitani KA. Surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol. 2004;134:1088–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu MM, Liu C, Wu F. Genome-wide identification, characterization and expression analysis of Xyloglucan Endotransglucosylase/hydrolase genes family in barley (Hordeum vulgare). Molecules. 2019;24:1935.
Article
CAS
PubMed Central
Google Scholar
Geisler LJ, Geisler M, Coutinho PM, Segerman B, Nishikubo N, Takahashi J, et al. Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol. 2006;140:946–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miedes E, Lorences EP. Xyloglucan endotransglucosylase/hydrolases (XTHs) during tomato fruit growth and ripening. J Plant Physiol. 2009;166:489–98.
Article
CAS
PubMed
Google Scholar
Song L, Valliyodan B, Prince S, Wan J, Nguyen HT. Characterization of the XTH gene family: new insight to the roles in soybean flooding tolerance. Int J Mol Sci. 2018;19:2705.
Article
PubMed Central
CAS
Google Scholar
Wang M, Xu Z, Ding A, Kong Y. Genome-wide identification and expression profiling analysis of the Xyloglucan Endotransglucosylase/hydrolase gene family in tobacco (Nicotiana tabacum L). Genes. 2018;9:273.
Article
PubMed Central
CAS
Google Scholar
Li QY, Li HY, Yin CY, Wang XT, Jiang Q, Zhang R, et al. Genome-wide identification and characterization of Xyloglucan Endotransglucosylase/hydrolase in Ananas comosus during development. Genes. 2019;10:537.
Article
PubMed Central
CAS
Google Scholar
Hyodo H, Yarnakawa S, Takeda Y, Tsuduki M, Yokota A, Nishitani K, et al. Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Mol Biol. 2003;52:473–82.
Article
CAS
PubMed
Google Scholar
Vissenberg K, Van Sandt V, Fry SC, Verbelen JP. Xyloglucan endotransglucosylase action is high in the root elongation zone and in the trichoblasts of all vascular plants from Selaginella to Zea mays. J Exp Bot. 2003;54:335–44.
Article
CAS
PubMed
Google Scholar
Harada T, Torii Y, Morita S, Onodera R, Hara Y, Yokoyama R, et al. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansion genes associated with petal growth and development during carnation flower opening. J Exp Bot. 2011;62:815–23.
Article
CAS
PubMed
Google Scholar
Atkinson RG, Johnston SL, Yauk YK, Sharma NN, Schröder R. Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biol Technol. 2009;51:149–57.
Article
CAS
Google Scholar
Opazo MC, Figueroa CR, Henriquez J, Herrera R, Bruno C, Valenzuela PD, Moya-Leon MA. Characterization of two divergent cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) expressed in Fragaria chiloensis fruit. Plant Sci. 2010;179:479–88.
Article
CAS
PubMed
Google Scholar
Xuan Y, Zhou ZS, Li HB, Yang ZM. Identification of a group of XTHs genes responding to heavy metal mercury, salinity and drought stresses in Medicago truncatula. Ecotoxicol Environ Saf. 2016;132:153–63.
Article
CAS
PubMed
Google Scholar
Shin Y, Yum H, Kim ES, Cho H, Gothandam KM, Hyun J, et al. BcXTH1, a Brassica campestris homologue of Arabidopsis XTH9 is associated with cell expansion. Planta. 2006;224:32–41.
Article
CAS
PubMed
Google Scholar
Lee J, Bums TH, Light G, Sun Y, Fokar M, Kasukabe KF, et al. Xyloglucan endotransglucosylase/hydrolase genes in cotton and their role in fiber elongation. Planta. 2010;232:l191–05.
Article
CAS
Google Scholar
Cho SK, Kim JE, Park JA, Eom TJ, Kim WT. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase /hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett. 2006;580:3136–44.
Article
CAS
PubMed
Google Scholar
Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS. Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase / hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep. 2011;30:867–77.
Article
CAS
PubMed
Google Scholar
Han YS, Sa G, Sun J, Shen Z, Zhao R, Ding M, et al. Overexpression of Populus euphratica xyloglucan endo-transglucosylase/hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco. Environ Exp Bot. 2014;100:74–83.
Article
CAS
Google Scholar
Han YS, Wang W, Sun J, Ding MQ, Zhao R, Deng SR, et al. Polus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. J Exp Bot. 2013;64:4225–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen JR, Chen YB, Ziemianska M, Liu R, Niedźwiecka-Filipiak I, Li YL, et al. Co-expression of MtDREB1C and RcXET enhances stress tolerance of transgenic China rose (Rosa chinensis Jacq). J Plant Growth Regul. 2016;35:586–99.
Article
CAS
Google Scholar
Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhou YH, et al. XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. Plant Cell. 2012;24:4731–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell. 2006;18:1348–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell. 2006;18:1339–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanc G, Hokamp K, Wolfe KH. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 2003;13:137–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lysak MA, Koch MA, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005;15:516–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graham GJ. Tandem genes and clustered genes. J Theor Biol. 1995;175:71–87.
Article
CAS
PubMed
Google Scholar
Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345:950–3.
Article
CAS
PubMed
Google Scholar
Liu SY, Liu YM, Yang XH, Tong CB, Edwards D, Parkin IAP, Zhao MX, Ma JX, Yu JY, Huang SM, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploidy genomes. Nat Commun. 2014;5:3930.
Article
CAS
PubMed
Google Scholar
Kaewthai N, Gendre D, EklöF JM, Ibatullin FM, Ezcuura I, Bhalerao RP, et al. Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. Plant Physiol. 2013;161(1):440–54.
Article
CAS
PubMed
Google Scholar
Yokoyama R, Nishitani K. Functional diversity of xyloglucan-related proteins and its implications in the cell wall dynamics in plants. Plant Biol. 2000;2:598–604.
Article
CAS
Google Scholar
Kallas AM, et al. Enzymatic properties of native and deglycosylated hybrid aspen (Populus tremula x tremuloides) xyloglucan endotransglycosylase 16A expressed in Pichia pastoris. Biochem J. 2005;390:105–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnasson P, Brumer H, Baumann MJ, Kallas ÅM, Henriksson H, Denman SE, et al. Crystal structures of a poplar Xyloglucan Endotransglycosylase reveal details of Transglycosylation acceptor binding. Plant Cell. 2004;16(4):874–86.
Article
CAS
Google Scholar
Henriksson H, Denman SE, Campuzano IDG, Ademark P, Master ER, Teeri TT, et al. N-linked glycosylation of native and recombinant cauliflower xyloglucan endotransglycosylase 16A. Biochem J. 2003;375(1):61–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozak KH, Mendyk RW, Wiens JJ. Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of north American salamanders. Evolution. 2009;63(7):1769–84.
Article
PubMed
Google Scholar
Cheng F, Wu J, Fang L, Wang X. Syntenic gene analysis between B rapa and other Brassicaceae species. Front Plant Sci. 2012;3:198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, et al. B. rapa genome sequencing project consortium-the genome of the mesopolyploid crop species Brassica rapa. Nat Genet. 2011;43:1035–9.
Article
CAS
PubMed
Google Scholar
Nekrutenko A, Makova KD, Li WH. The KA/KS ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res. 2002;12:198–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rai KM, Thu SW, Balasubramanian VK, Cobos CJ, Disasa T, Mendu V. Identification, Characterization, and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L.) Moench, a Food, Fodder, and Biofuel Crop. Front Plant Sci. 2016;7(77):1287.
PubMed
PubMed Central
Google Scholar
Nawaz MA, Rehman HM, Imtiaz M, Baloch FS, Lee JD, Yang SH, et al. Systems Identification and Characterization of Cell Wall Reassembly and Degradation Related Genes in Glycine max (L.) Merill, a Bioenergy Legume. Sci Rep. 2017;7:10862.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wolf Y, Madej T, Babenko V, Shoemaker B, Panchenko AR. Long-term trends in evolution of indels in protein sequences. BMC Evol Biol. 2007;7:19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Sandt V, Guisez Y, Verbelen JP, Vissenberg K. Analysis of a xyloglucan endotransglucosylase/hydrolase (XTH) from the lycopodiophyte Selaginella kraussiana suggests that XTH sequence characteristics and function are highly conserved during the evolution of vascular plants. J Exp Bot. 2006;57:2909–22.
Article
PubMed
Google Scholar
Liang ZW, Li MD, Liu ZHY, Wang JB. Genome-wide identification and characterization of the Hsp70 gene family in allopolyploid rapeseed (Brassica napus L.) compared with its diploid progenitors. Peer J. 2019;7:e7511.
Article
PubMed
PubMed Central
Google Scholar
Becnel J, Natarajan M, Kipp A, Braam J. Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator. Plant Mol Biol. 2006;61:451–67.
Article
CAS
PubMed
Google Scholar
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290:1151–5.
Article
CAS
PubMed
Google Scholar
Cheng F, Liu SY, Wu J, Fang L, Sun SL, Liu B, et al. BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol. 2011;11:136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012;40:D1202–10.
Article
CAS
PubMed
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.
Article
CAS
PubMed
Google Scholar
Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, et al. TBtools - an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020. https://doi.org/10.1016/jmolp202006009.
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–3.
Article
CAS
PubMed
Google Scholar
Østergaard L, King GJ. Standardized gene nomenclature for the Brassica genus. Plant Methods. 2008;4:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531–52.
CAS
PubMed
Google Scholar
Chou KC, Shen HB. Cell-PLoc 2.0: An improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Sci. 2010;2:1090–103.
CAS
Google Scholar
Armenteros JJA, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420.
Article
CAS
Google Scholar
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43:W39–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42(W1):W320–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voorrips RE. Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93:77–8.
Article
CAS
PubMed
Google Scholar
Kong X, Lv W, Jiang S, Zhang D, Cai G, Pan J, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics. 2013;14:433.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Ke T, Tehrim S, Sun F, Liao B, Hua W. PTGBase: an integrated database to study tandem duplicated genes in plants. Database (Oxford). 2015;2015:bav017. https://doi.org/10.1093/database/bav017.
Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 2002;12:47–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koch MA, Haubold B, Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol. 2000;17:1483–98.
Article
CAS
PubMed
Google Scholar
Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, et al. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics. 2014;15(1):3.
Article
PubMed
PubMed Central
Google Scholar
Tong C, Wang X, Yu J, Wu J, Li W, Huang J, et al. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics. 2013;14:689.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao QY, Xia EH, Liu FH, Gao LZ. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var capitata. Gene. 2015;35:557.
Google Scholar