Zahran HH. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev. 1999;63:968–89.
Article
CAS
Google Scholar
Li S, Li F, Wang J, Zhang W, Meng Q, Chen TH, Murata N, Yang X. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ. 2011;34:1931–43. https://doi.org/10.1111/j.1365-3040.2011.02389.x.
Article
CAS
Google Scholar
Vollenweider P, Gunthardt-Goerg MS. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut. 2006;140:562–71.
Article
CAS
Google Scholar
Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009;323:240–4. https://doi.org/10.1126/science.1164363.
Article
CAS
Google Scholar
Li W, Wei Z, Qiao Z, Wu Z, Cheng L, Wang Y. Proteomics analysis of alfalfa response to heat stress. PLoS One. 2013;8:e82725. https://doi.org/10.1371/journal.pone.0082725.
Article
CAS
Google Scholar
Hu W, Kong H, Guo Y, Zhang Y, Ding Z, Tie W, Yan Y, Huang Q, Peng M, Shi H, Guo A. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava. Front Plant Sci. 2016;7:736. https://doi.org/10.3389/fpls.2016.00736.
Article
Google Scholar
Kamal AHM, Komatsu S. Jasmonic acid induced protein response to biophoton emissions and flooding stress in soybean. J Proteome. 2016;133:33–47. https://doi.org/10.1016/j.jprot.2015.12.004.
Article
CAS
Google Scholar
Staudinger C, Mehmeti-Tershani V, Gil-Quintana E, Gonzalez EM, Hofhansl F, Bachmann G, Wienkoop S. Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J Proteome. 2016;136:202–13. https://doi.org/10.1016/j.jprot.2016.01.006.
Article
CAS
Google Scholar
Ma Q, Kang J, Long R, Zhang T, Xiong J, Zhang K, Wang T, Yang Q, Sun Y. Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. Mol Biol Rep. 2017;44:261–72. https://doi.org/10.1007/s11033-017-4104-5.
Article
CAS
Google Scholar
Zhang C, Shi S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci. 2018;9:242. https://doi.org/10.3389/fpls.2018.00242.
Article
Google Scholar
Xiong J, Sun Y, Yang Q, Tian H, Zhang H, Liu Y, Chen M. Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots. Proteome Sci. 2017;15:19. https://doi.org/10.1186/s12953-017-0127-z.
Article
CAS
Google Scholar
Chen L, Chen Q, Zhu Y, Hou L, Mao P. Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L.) flower development. Front Plant Sci. 2016;7:1502. https://doi.org/10.3389/fpls.2016.01502.
Article
Google Scholar
Heazlewood JL. The green proteome: challenges in plant proteomics. Front Plant Sci. 2011;2:6. https://doi.org/10.3389/fpls.2011.00006.
Article
Google Scholar
Carroll AW, Joshi HJ, Heazlewood JL. Managing the green proteomes for the next decade of plant research. Front Plant Sci. 2013;4:501. https://doi.org/10.3389/fpls.2013.00501.
Article
Google Scholar
Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ, Lee BH. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics. 2007;7:3369–83. https://doi.org/10.1002/pmic.200700266.
Article
CAS
Google Scholar
Zou J, Liu C, Chen X. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep. 2011;30:2155–65. https://doi.org/10.1007/s00299-011-1122-y.
Article
CAS
Google Scholar
Wei YJ, Huang YX, Shen Y, Cui CJ, Zhang XL, Zhang H, Hu SS. Proteomic analysis reveals significant elevation of heat shock protein 70 in patients with chronic heart failure due to arrhythmogenic right ventricular cardiomyopathy. Mol Cell Biochem. 2009;332:103–11. https://doi.org/10.1007/s11010-009-0179-1.
Article
CAS
Google Scholar
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218.
Article
CAS
Google Scholar
Hannoufa A, Matthews C, Feyissa BA, Gruber MY, Arshad M. Progress toward deep sequencing-based discovery of stress-related microRNA in plants and available bioinformatics tools. In: Progress in Botany 81. Berlin, Heidelberg: Springer; 2018. https://doi.org/10.1007/124_2018_25.
Chapter
Google Scholar
Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 2013;64:137–59. https://doi.org/10.1146/annurev-arplant-050312-120043.
Article
CAS
Google Scholar
Aung B, Gruber MY, Amyot L, Omari K, Bertrand A, Hannoufa A. MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotechnol J. 2015;13:779–90. https://doi.org/10.1111/pbi.12308.
Article
CAS
Google Scholar
Aung B, Gruber MY, Amyot L, Omari K, Bertrand A, Hannoufa A. Ectopic expression of LjmiR156 delays flowering, enhances shoot branching, and improves forage quality in alfalfa. Plant Biotechnol Rep. 2015;9:379–93. https://doi.org/10.1007/s11816-015-0375-2.
Article
Google Scholar
Arshad M, Gruber M, Hannoufa A. Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Sci Rep. 2018;8:9363. https://doi.org/10.1038/s41598-018-27088-8.
Article
CAS
Google Scholar
Cardon G, Höhmann S, Klein J, Nettesheim K, Saedler H, Huijser P. Molecular characterisation of the Arabidopsis SBP-box genes. Gene. 1999;237:91–104.
Article
CAS
Google Scholar
Gao R, Gruber MY, Amyot L, Hannoufa A. SPL13 regulates shoot branching and flowering time in Medicago sativa. Plant Mol Biol. 2018;96:119–33. https://doi.org/10.1007/s11103-017-0683-8.
Article
CAS
Google Scholar
Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci. 2017;258:122–36. https://doi.org/10.1016/j.plantsci.2017.01.018.
Article
CAS
Google Scholar
Arshad M, Gruber MY, Wall K, Hannoufa A. An insight into microRNA156 role in salinity stress responses of alfalfa. Front Plant Sci. 2017;8:356. https://doi.org/10.3389/fpls.2017.00356.
Article
Google Scholar
Claussen W. Proline as a measure of stress in tomato plants. Plant Sci. 2005;168:241–8. https://doi.org/10.1016/j.plantsci.2004.07.039.
Article
CAS
Google Scholar
Rivero R, Ruiz M, Romero LM. Importance of N source on heat stress tolerance due to the accumulation of proline and quaternary ammonium compounds in tomato plants. Plant Biol. 2004;6:702–7. https://doi.org/10.1055/s-2004-821293.
Article
CAS
Google Scholar
Hamilton EW. Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol. 2001;126:1266–74. https://doi.org/10.1104/pp.126.3.1266.
Article
CAS
Google Scholar
Tonhati R, Mello SC, Momesso P, Pedroso RM. L-proline alleviates heat stress of tomato plants grown under protected environment. Sci Hortic. 2020;268:109370. https://doi.org/10.1016/j.scienta.2020.109370.
Article
CAS
Google Scholar
Abdula SE, Lee HJ, Ryu H, Kang KK, Nou I, Sorrells ME, Cho YG. Overexpression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in rice. Plant Mol Biol Rep. 2016;34:501–11. https://doi.org/10.1007/s11105-015-0939-x.
Article
CAS
Google Scholar
Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol Mol Biol Plants. 2011;17:203. https://doi.org/10.1007/s12298-011-0078-2.
Article
CAS
Google Scholar
Oukarroum A, Madidi ES, Strasser RJ. Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): a chlorophyll a fluorescence study. Plant Biosystems-An Int J Deal Aspects Plant Biol. 2012;146:1037–43. https://doi.org/10.1080/11263504.2012.697493.
Article
Google Scholar
Matthews C, Arshad M, Hannoufa A. Alfalfa response to heat stress is modulated by microRNA156. Physiol Plant. 2019;165:830–42. https://doi.org/10.1111/ppl.12787.
Article
CAS
Google Scholar
Ashraf M. Inducing drought tolerance in plants: recent advances. Biotechnol Adv. 2010;28:169–83. https://doi.org/10.1016/j.biotechadv.2009.11.005.
Article
CAS
Google Scholar
Gao R, Austin RS, Amyot L, Hannoufa A. Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa. BMC Genomics. 2016;17. https://doi.org/10.1186/s12864-016-3014-6.
Feyissa BA, Arshad M, Gruber MY, Kohalmi SE, Hannoufa A. The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa. BMC Plant Biol. 2019;19:1–19. https://doi.org/10.1186/s12870-019-2059-5.
Article
CAS
Google Scholar
Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric Forest Meteorol. 2013;170:206–15. https://doi.org/10.1016/j.agrformet.2011.09.002.
Article
Google Scholar
Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: an overview. Environ Exp Bot. 2007;61:199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011.
Article
Google Scholar
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13:2513–26. https://doi.org/10.1074/mcp.M113.031591.
Article
CAS
Google Scholar
Gilroy S, Bialasek M, Suzuki N, Gorecka M, Devireddy AR, Karpinski S, Mittler R. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 2016;171:1606–15. https://doi.org/10.1104/pp.16.00434.
Article
CAS
Google Scholar
Anjum NA, Aref IM, Duarte AC, Pereira E, Ahmad I, Iqbal M. Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Front Plant Sci. 2014;5. https://doi.org/10.3389/fpls.2014.00662.
Cui LG, Shan JX, Shi M, Gao JP, Lin HX. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 2014;80:1108–17. https://doi.org/10.1111/tpj.12712.
Article
CAS
Google Scholar
Li N, Zhang S, Liang YJ, Qi YH, Chen J, Zhu WN, Zhang LS. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. J Proteome. 2018;172:122–42. https://doi.org/10.1016/j.jprot.2017.09.016.
Article
CAS
Google Scholar
Das A, Eldakak M, Paudel B, Kim DW, Hemmati H, Basu C, Rohila JS. Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. Biomed Res Int. 2016. https://doi.org/10.1155/2016/6021047.
Sah SK, Reddy KR, Li JX. Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci. 2016;7. https://doi.org/10.3389/fpls.2016.00571.
Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–60. https://doi.org/10.1093/aob/mcn125.
Article
CAS
Google Scholar
Lawlor DW, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot. 2009;103:561–79. https://doi.org/10.1093/aob/mcn244.
Article
CAS
Google Scholar
Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J. A central integrator of transcription networks in plant stress and energy signalling. Nature. 2007;448:938–U910. https://doi.org/10.1038/nature06069.
Article
CAS
Google Scholar
Yin Y, Li SM, Liao WQ, Lu QT, Wen XG, Lu CM. Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. J Plant Physiol. 2010;167:959–66. https://doi.org/10.1016/j.jplph.2009.12.021.
Article
CAS
Google Scholar
Liu GT, Ma L, Duan W, Wang BC, Li JH, Xu HG, Yan XQ, Yan BF, Li SH, Wang LJ. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biol. 2014;14:110. https://doi.org/10.1186/1471-2229-14-110.
Article
CAS
Google Scholar
Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L. Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis. 2011;32:1807–18. https://doi.org/10.1002/elps.201000663.
Article
CAS
Google Scholar
Oukarroum A, Schansker G, Strasser RJ. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant. 2009;137:188–99. https://doi.org/10.1111/j.1399-3054.2009.01273.x.
Article
CAS
Google Scholar
Aranjuelo I, Molero G, Erice G, Avice JC, Nogues S. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot. 2011;62:111–23. https://doi.org/10.1093/jxb/erq249.
Article
CAS
Google Scholar
Sahu AC, Sahoo SK, Sahoo N. NaCl-stress induced alteration in glutamine synthetase activity in excised senescing leaves of a salt-sensitive and a salt-tolerant rice cultivar in light and darkness. Plant Growth Regul. 2001;34:287–92. https://doi.org/10.1023/A:1013395701308.
Article
CAS
Google Scholar
el-Khatib RT, Hamerlynck EP, Gallardo F, Kirby EG. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 2004;24:729–36.
Article
CAS
Google Scholar
de las Mercedes Dana M, Pintor-Toro JA, Cubero B. Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol. 2006;142:722–30.
Article
Google Scholar
Sarwat M, Naqvi AR. Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum. Molecular Biol Rep. 2013;40:5451–64.
Article
CAS
Google Scholar
Ban Q, Jiao J, He Y, Jin M, Rao J. Ectopic expression of the persimmon β-galactosidase gene DkGAL2 promotes leaf growth, delays dark-induced senescence and enhances tolerance to abiotic stress in Arabidopsis. Sci Hortic. 2020;265:109232. https://doi.org/10.1016/j.scienta.2020.109232.
Article
CAS
Google Scholar
Pennycooke JC, Jones ML, Stushnoff C. Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol. 2003;133:901–9. https://doi.org/10.1104/pp.103.024554.
Article
CAS
Google Scholar
Bita CE, Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. 2013;4. https://doi.org/10.3389/fpls.2013.00273.
Jacob P, Hirt H, Bendahmane A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J. 2017;15:405–14. https://doi.org/10.1111/pbi.12659.
Article
CAS
Google Scholar
Heckathorn SA, Downs CA, Coleman JS. Small heat shock proteins protect electron transport in chloroplasts and mitochondria during stress. Am Zool. 1999;39:865–76. https://doi.org/10.1093/icb/39.6.865.
Article
CAS
Google Scholar
Downs CA, Coleman JS, Heckathorn SA. The chloroplast 22-Ku heat-shock protein: A lumenal protein that associates with the oxygen evolving complex and protects photosystem II during heat stress. J Plant Physiol. 1999;155:477–87. https://doi.org/10.1016/S0176-1617(99)80042-X.
Article
CAS
Google Scholar
Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, Lee SH, Lee BH. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett. 2012;34:371–7. https://doi.org/10.1007/s10529-011-0769-3.
Article
CAS
Google Scholar
Liu Y, Wu R, Wan Q, Xie G, Bi Y. Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant Cell Physiol. 2007;48:511–22.
Article
CAS
Google Scholar
Abraham E, Hourton-Cabassa C, Erdei L, Szabados L. Methods for determination of proline in plants. Methods Mol Biol. 2010;639:317–31. https://doi.org/10.1007/978-1-60761-702-0_20.
Article
CAS
Google Scholar
Marx H, Minogue CE, Jayaraman D, Richards AL, Kwiecien NW, Siahpirani AF, Rajasekar S, Maeda J, Garcia K, Del Valle-Echevarria AR, Volkening JD, Westphall MS, Roy S, Sussman MR, Ane JM, Coon JJ. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat Biotechnol. 2016;34:1198–205. https://doi.org/10.1038/nbt.3681.
Article
CAS
Google Scholar
Pundir S, Martin MJ, O'Donovan C. UniProt protein knowledgebase. Methods Mol Biol. 2017;1558:41–55. https://doi.org/10.1007/978-1-4939-6783-4_2.
Article
CAS
Google Scholar
Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45:D1040–5. https://doi.org/10.1093/nar/gkw982.
Article
CAS
Google Scholar
Tian F, Yang D, Meng Y, Jin J, Gao G. PlantRegMap: charting functional regulator maps in plants. Nucleic Acid Res. 2020;48:1104–13.
Google Scholar
Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800.
Article
CAS
Google Scholar
Oliveros, Juan C. “Venny”. An interactive tool for comparing lists with Venn Diagrams, 2007. https://bioinfogp.cnb.csic.es/tools/venny/.
Google Scholar