Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27(8):1767–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snel B, Huynen MA, Dutilh BE. Genome trees and the nature of genome evolution. Annu Rev Microbiol. 2005;59:191–209.
Article
CAS
PubMed
Google Scholar
Avise JC. Phylogeography: the history and formation of species. Cambridge: Harvard University press; 2000.
Wolstenholme DR. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol. 1992;141:173–216.
Article
CAS
PubMed
Google Scholar
Stampar SN, Broe MB, Macrander J, Reitzel AM, Brugler MR, Daly M. Linear mitochondrial genome in Anthozoa (Cnidaria): a case study in Ceriantharia. Sci Rep. 2019;9(1):1–12.
Article
CAS
Google Scholar
Lavrov DV, Adamski M, Chevaldonne P, Adamska M. Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Curr Biol. 2016;26(1):86–92.
Article
CAS
PubMed
Google Scholar
Podsiadlowski L, Mwinyi A, Lesný P, Bartolomaeus T. Mitochondrial gene order in Metazoa–theme and variations. In: Wägele JW, Bartolomaeus T, editors. Deep Metazoan Phylogeny: the backbone of the tree of life. Berlin: Walter De Gruyter GmbH; 2014. p. 459–72.
Google Scholar
Richter S, Schwarz F, Hering L, Böggemann M, Bleidorn C. The utility of genome skimming for phylogenomic analyses as demonstrated for glycerid relationships (Annelida, Glyceridae). Genome Biol Evol. 2015;7(12):3443–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rawlings TA, Collins TM, Bieler R. A major mitochondrial gene rearrangement among closely related species. Mol Biol Evol. 2001;18(8):1604–9.
Article
CAS
PubMed
Google Scholar
Hickerson MJ, Cunningham CW. Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, Anomura). Mol Biol Evol. 2000;17(4):639–44.
Article
CAS
PubMed
Google Scholar
Aguado MT, Richter S, Sontowski R, Golombek A, Struck TH, Bleidorn C. Syllidae mitochondrial gene order is unusually variable for Annelida. Gene. 2016;594(1):89–96.
Article
CAS
PubMed
Google Scholar
Weigert A, Golombek A, Gerth M, Schwarz F, Struck TH, Bleidorn C. Evolution of mitochondrial gene order in Annelida. Mol Phylogenet Evol. 2016;94:196–206.
Article
CAS
PubMed
Google Scholar
Organelle Genome Resource. http://www.ncbi.nlm.nih.gov/genome/organelle/. Accessed 20 May 2019.
Zhang Y, Sun J, Rouse GW, Wiklund H, Pleijel F, Watanabe HK, Chen C, Qian PY, Qiu JW. Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms (Aphroditiformia, Annelida). Mol Phylogenet Evol. 2018;125:220–31.
Article
CAS
PubMed
Google Scholar
McHugh D. Molecular phylogeny of the Annelida. Can J Zool. 2000;78(11):1873–84.
Article
CAS
Google Scholar
Brusca RC, Brusca GJ. Invertebrates. Basingstoke; 2003.
Google Scholar
Zhang ZQ. Animal biodiversity: an update of classification and diversity in 2013. Zootaxa. 2013;3703(1):5–11.
Article
Google Scholar
Schmidt-Rhaesa A, Harzsch S, Purschke G. Structure and evolution of invertebrate nervous systems. Oxford and New York: Oxford University Press; 2015.
Giangrande A. Polychaete reproductive patterns, life cycles and life histories: an overview. Oceanogr Mar Biol Ann Rev. 1997;35:323–86.
Google Scholar
Weigert A, Bleidorn C. Current status of annelid phylogeny. Org Divers Evol. 2016;16(2):345–62.
Article
Google Scholar
Shain DH. Annelids in modern biology. Hoboken: Wiley-Blackwell; 2009.
Halanych KM, Borda E. Developing models for Lophotrochozoan and Annelid biology. In: Shain DH, editor. Annelids in Modern Biology. Hoboken: Wiley-Blackwell; 2009. p. 1-12.
Fischer AH, Henrich T, Arendt D. The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool. 2010;7(1):31.
Article
PubMed
PubMed Central
Google Scholar
Arendt D, Technau U, Wittbrodt J. Evolution of the bilaterian larval foregut. Nature. 2001;4409:81–5.
Article
CAS
Google Scholar
Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, Kuo DH, Larsson T, Lv J, Arendt D, et al. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493:526–31.
Article
CAS
PubMed
Google Scholar
Libralato G, Minetto D, Lofrano G, Guida M, Carotenuto M, Aliberti F, Barbara C, Notarnicola M. Toxicity assessment within the application of in situ contaminated sediment remediation technologies: a review. Sci Total Environ. 2018;621:85–94.
Article
CAS
PubMed
Google Scholar
Diaz V, Reish D. Polychaetes in Environmental Studies. In: Shain DH, editor. Annelids in Modern Biology. Hoboken: Wiley-Blackwell; 2009. Chapter 11..
Thornhill DJ, Dahlgren TG, Halanych K. The evolution and ecology of Ophryotrocha (Dorvilleidae, Eunicida). In: Shain DH, editor. Annelids as Model Systems in the Biological Sciences. Hoboken: Wiley-Blackwell; 2009. p. 242-256.
Massamba-N’Siala G, Calosi P, Bilton DT, Prevedelli D, Simonini R. Life-history and thermal tolerance traits display different thermal plasticities and relationships with temperature in the marine polychaete Ophryotrocha labronica La Greca and Bacci (Dorvilleidae). J Exp Mar Biol Ecol. 2012;438:109–17.
Article
Google Scholar
Massamba-N’Siala G, Prevedelli D, Simonini R. Trans-generational plasticity in physiological thermal tolerance is modulated by maternal pre-reproductive environment in the polychaete Ophryotrocha labronica. J Exp Biol. 2014;217:2004–12.
Article
PubMed
Google Scholar
Prevedelli D, Massamba N’Siala G, Simonini R. Gonochorism vs hermaphroditism: relationship between life history and fitness in three species of Ophryotrocha (Polychaeta: Dorvilleidae) with different form of sexuality. J An Ecol. 2006;75:203–12.
Article
Google Scholar
Schleicherova D, Lorenzi MC, Sella G, Michiels NK. Gender expression and group size: a test in a hermaphroditic and a gonochoric congeneric species of Ophryotrocha (Polychaeta). J Exp Biol. 2010;213(9):1586–90.
Article
CAS
PubMed
Google Scholar
Lorenzi MC, Meconcelli S, Sella G. Social recognition in Annelids and the evolution of social recognition and cognitive abilities by sexual selection. In: Social Recognition in Invertebrates. Cham: Springer; 2015. p. 1–15.
Google Scholar
Calosi P, De Wit P, Thor P, Dupont S. Will life find a way? Evolution of marine species under global change. Evol Appl. 2016;9:1035–42.
Article
PubMed
PubMed Central
Google Scholar
Chakravarti LJ, Jarrold MD, Gibbin EM, Christen F, Massamba-N’Siala G, Blier PU, Calosi P. Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification? Evol Appl. 2016;9(9):1133–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibbin EM, Massamba-N’Siala G, Chakravarti LJ, Jarrold MD, Calosi P. The evolution of phenotypic plasticity under global change. Sci Rep. 2017;7(1):17253.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jarrold MD, Chakravarti LJ, Gibbin EM, Christen F, Massamba-N'Siala G, Blier PU, Calosi P. Life-history trade-offs and limitations associated with phenotypic adaptation under future ocean warming and elevated salinity. Philos Trans Royal Soc B. 2019;374(1768):20180428.
Article
Google Scholar
Thibault C, Massamba-N’Siala G, Noisette F, Vermandele F, Babin M, Calosi P. Within- and trans-generational responses to ocean warming and acidification are highly divergent in two congeneric species of marine annelids. Mar Biol. 2020;167(4):1-17.
Zhang DS, Zhou YD, Wang CS, Rouse GW. A new species of Ophryotrocha (Annelida, Eunicida, Dorvilleidae) from hydrothermal vents on the southwest Indian ridge. ZooKeys. 2017;687:1.
Article
Google Scholar
Dahlgren TG, Åkesson B, Schander C, Halanych KM, Sundberg P. Molecular phylogeny of the model annelid Ophryotrocha. Biol Bull. 2001;201(2):193–203.
Article
CAS
PubMed
Google Scholar
Heggøy KK, Schander C, Åkesson B. The phylogeny of the annelid genus Ophryotrocha (Dorvilleidae). Mar Biol Res. 2007;3(6):412–20.
Article
Google Scholar
Wiklund H, Glover AG, Dahlgren TG. Three new species of Ophryotrocha (Annelida: Dorvilleidae) from a whale-fall in the north-East Atlantic. Zootaxa. 2009;2228:43–56.
Article
Google Scholar
Wiklund H, Altamira IV, Glover AG, Smith CR, Baco AR, Dahlgren TG. Systematics and biodiversity of Ophryotrocha (Annelida, Dorvilleidae) with descriptions of six new species from deep-sea whale-fall and wood-fall habitats in the north-East Pacific. Syst Biodivers. 2012;10(2):243–59.
Article
Google Scholar
Paxton H, Wiklund H, Alexander F, Taboada S. Is the Antarctic Ophryotrocha orensanzi (Annelida: Dorvilleidae) a circumpolar non-specialized opportunist? Syst Biodivers. 2017;15(2):105–14.
Article
Google Scholar
Taboada S, Wiklund H, Glover AG, Dahlgren TG, Cristobo J, Avila C. Two new Antarctic Ophryotrocha (Annelida: Dorvilleidae) described from shallow-water whale bones. Polar Biol. 2013;36(7):1031–45.
Article
Google Scholar
Salvo F, Dufour SC, Hamoutene D, Parrish CC. Lipid classes and fatty acids in Ophryotrocha cyclops, a Dorvilleid from Newfoundland aquaculture sites. PLoS One. 2015;10(8):e0136772.
Article
PubMed
PubMed Central
CAS
Google Scholar
Okimoto R, Macfarlane JL, Wolstenholme DR. Evidence for the frequent use of TTG as the translation initiation codon of mitochondrial protein genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucleic Acids Res. 1990;18(20):6113–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boore JL, Brown WM. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol. 2000;17(1):87–106.
Article
CAS
PubMed
Google Scholar
Bleidorn C, Vogt L, Bartolomaeus T. New insights into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Mol Phylogen Evol. 2003;29(2):279–88.
Article
CAS
Google Scholar
Zhong M, Struck TH, Halanych KM. Phylogenetic information from three mitochondrial genomes of Terebelliformia (Annelida) worms and duplication of the methionine tRNA. Gene. 2008;416:11–21.
Article
CAS
PubMed
Google Scholar
Shen X, Ma X, Ren J, Zhao F. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta. BMC Genomics. 2009;10(1):136.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim H, Kim HJ, Lee YH. The complete mitochondrial genome of the marine polychaete: Hediste diadroma (Phyllodocida, Nereididae). Mitochondrial DNA Part B. 2016;1(1):822–3.
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Nie J, Hou J, Xiao L, Lv P. Complete mitochondrial genome of Hirudo nipponia (Annelida, Hirudinea). Mitochondrial DNA Part A. 2016;27(1):257–8.
Article
CAS
Google Scholar
Mwinyi A, Meyer A, Bleidorn C, Lieb B, Bartolomaeus T, Podsiadlowski L. Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida. BMC Genomics. 2009;10(1):27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A. Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene. 1999;238(1):195–209.
Article
CAS
PubMed
Google Scholar
Knight RD, Freeland SJ, Landweber LF. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol. 2001;2(4):research0010–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Min XJ, Hickey DA. DNA asymmetric strand bias affects the amino acid composition of mitochondrial proteins. DNA Res. 2007;14(5):201–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boore JL, Brown WM. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev. 1998;8(6):668–74.
Article
CAS
PubMed
Google Scholar
Bernt M, Braband A, Middendorf M, Misof B, Rota-Stabelli O, Stadler PF. Bioinformatics methods for the comparative analysis of metazoan mitochondrial genome sequences. Mol Phylogenet Evol. 2013;69(2):320–7.
Article
CAS
PubMed
Google Scholar
Osca D, Irisarri I, Todt C, Grande C, Zardoya R. The complete mitochondrial genome of Scutopus ventrolineatus (Mollusca: Chaetodermomorpha) supports the Aculifera hypothesis. BMC Evolut Biol. 2014;14(1):197.
Google Scholar
Black WC 4th, Roehrdanz RL. Mitochondrial gene order is not conserved in arthropods: Prostriate and metastriate tick mitochondrial genomes. Mol Biol Evol. 1998;15(12):1772–85.
Article
CAS
PubMed
Google Scholar
Golombek A, Tobergte S, Nesnidal MP, Purschke G, Struck TH. Mitochondrial genomes to the rescue – Diurodrilidae in the myzostomid trap. Mol Phylogenet Evol. 2013;68:312–26.
Article
CAS
PubMed
Google Scholar
Oceguera-Figueroa A, Manzano-Marin A, Kvist S, Moya A, Siddall ME, Latorre A. Comparative mitogenomics of leeches (Annelida: Clitellata): Genome conservation and Placobdella-specific trnD gene duplication. PLoS One. 2016;11(5):e0155441.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo YJ, Satoh N, Endo K. Mitochondrial gene order variation in the brachiopod Lingula anatina and its implications for mitochondrial evolution in lophotrochozoans. Mar Genomics. 2015;24:31–40.
Article
CAS
PubMed
Google Scholar
Kajander OA, Rovio AT, Majamaa K, Poulton J, Spelbrink JN, Holt IJ, Karhunen PJ, Jacobs HT. Human mtDNA sublimons resemble rearranged mitochondrial genomes found in pathological states. Hum Mol Gen. 2000;9(19):2821–35.
Article
CAS
PubMed
Google Scholar
Dowton M, Campbell NJ. Intramitochondrial recombination–is it why some mitochondrial genes sleep around? Trends Ecol Evol. 2001;16(6):269–71.
Article
CAS
PubMed
Google Scholar
Seixas VC, Paiva PC, de Moraes Russo CA. Complete mitochondrial genomes are not necessarily more informative than individual mitochondrial genes to recover a well-established annelid phylogeny. Gene ReP. 2016;5:10–7.
Article
Google Scholar
Vallès Y, Boore JL. Lophotrochozoan mitochondrial genomes. Integr Comp Biol. 2006;46(4):544–57.
Article
PubMed
Google Scholar
Timbó RV, Togawa RC, Costa MM, Andow DA, Paula DP. Mitogenome sequence accuracy using different elucidation methods. PLoS One. 2017;12(6):e0179971.
Article
CAS
Google Scholar
Sun X, Wang Y, Chen P, Wang H, Lu L, Ye Z, Wu Y, Bu W, Xie Q. Biased heteroplasmy within the mitogenomic sequences of Gigantometra gigas revealed by sanger and high-throughput methods. Syst Zool. 2018;43(4):356–86.
Google Scholar
Paxton H, Åkesson B. The Ophryotrocha labronica group (Annelida: Dorvilleidae) - with the description of seven new species. Zootaxa. 2010;2713(1):1–24.
Article
Google Scholar
Orensanz JM. The eunicemorph polychaete annelids from Antarctic and Subantarctic seas, biology of the Antarctic seas XXI. Antarctic Res Series. 1990;52:1–183.
Article
Google Scholar
Høisæter T, Samuelsen TJ. Taxonomic and biological notes on a species of Iphitime (Polychaeta, Eunicida) associated with Pagurus prideauxfrom Western Norway. Mar Biol Res. 2006;2:333–54.
Article
Google Scholar
Wilson WH. Sexual reproductive modes in polychaetes: classification and diversity. Bull Mar Sci. 1991;48(2):500–16.
Google Scholar
Da] es RP. Annelids. Oxford: Hutchinson Library; 1967. p. 200.
Google Scholar
Meconcelli S, Lorenzi MC, Sella G. Labile sex expression and the evolution of dioecy in Ophryotrocha Polychaete worms. EvolBiol. 2015;42(1):42–53.
Google Scholar
Lorenzi MC, Sella G. In between breeding systems: neither dioecy nor 512 androdioecy explains sexual polymorphism in functionally dioecious worms. 513. Integr Comp Biol. 2013;53(4):689–700.
Article
PubMed
Google Scholar
Pleijel F, Eide R. The phylogeny of Ophryotrocha (Dorvilleidae: Eunicida: Polychaeta). J Nat Hist. 1996;30:647–59.
Article
Google Scholar
Sasson DA, Ryan JF. A reconstruction of sexual modes throughout animal evolution. BMC Evol Biol. 2017;17(1):242.
Article
PubMed
PubMed Central
Google Scholar
Simonini R, Massamba-N’Siala G, Grandi V, Prevedelli D. Distribution of the genus Ophryotrocha (Polychaeta) in Italy: new reports and comments on the biogeography of Mediterranean species. Vie Milieu. 2009;59(1):79–88.
Google Scholar
Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ. Predicting evolutionary responses to climate change in the sea. Ecol Lett. 2013;16(12):1488–500.
Article
PubMed
Google Scholar
Reusch TBH. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol Appl. 2014;7:104–22.
Article
PubMed
Google Scholar
Andrews S. FastQCA, quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed May 2019.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Afgan E, Baker D, Batut B, Van Den Beek M, Bouvier D, Čech M, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2016;45(4):e18.
PubMed Central
Google Scholar
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütze J, Middendorf M, Stadler PF. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69(2):313–9 http://mitos.bioinf.uni-leipzig.de/index.py.
Article
PubMed
Google Scholar
Rombel IT, Sykes KF, Rayner S, Johnston SA. ORF-FINDER: a vector for high-throughput gene identification. Gene. 2002;282(1–2):33–41.
Article
CAS
PubMed
Google Scholar
Laslett D, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2007;24(2):172–5.
Article
PubMed
CAS
Google Scholar
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45(W1):W6–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia X. DAMBE6: new tools for microbial genomics, phylogenetics, and molecular evolution. J Hered. 2017;108(4):431–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler PF, Middendorf M. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics. 2007;23(21):2957–8 http://pacosy.informatik.uni-leipzig.de/crex.
Article
CAS
PubMed
Google Scholar
Lavrov DV, Lang BF. Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. Syst Biol. 2005;54(4):651–9.
Article
PubMed
Google Scholar
Guy L, Roat Kultima J, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2010;26(18):2334–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2009;27(2):221–4.
Article
PubMed
CAS
Google Scholar
Castresana J. GBLOCKS: selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Version 0.91 b. Copyrighted by Castresana J. EMBL; 2002.
Google Scholar
Legendre P, Lapointe F-J. Assessing congruence among distance matrices: single-malt scotch whiskies revisited. Australian and New Zealand J Statistics. 2004;46:615–29.
Article
Google Scholar
Campbell V, Legendre P, Lapointe F-J. Assessing congruence among ultrametric distance matrices. J Classif. 2009;26:103–17.
Article
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289sific.
Article
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–6.
Article
CAS
PubMed
Google Scholar
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232–5 http://iqtree.cibiv.univie.ac.at.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol bioland evol. 2014;32(1):268–74.
Article
CAS
Google Scholar
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006;55(4):539–52.
Article
PubMed
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
Article
PubMed
PubMed Central
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: a community resource for phylogenetic analyses. In: Proceedings of the 2011 TeraGrid conference: extreme digital discovery. ACM; 2011. p. 41.
Google Scholar
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis; 2018.
Google Scholar
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10(4):e1003537 pmid:24722319.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rambaut A, Drummond AJ, Xie D, Baele G and Suchard MA. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67(5):901-4.