Halliwell B, Gutteridge JM. Free radicals in biology and medicine. USA: Oxford University Press; 2015.
Book
Google Scholar
Lushchak VI. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol. 2011;101(1):13–30.
Article
CAS
Google Scholar
Lesser MP. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol. 2006;68:253–78.
Article
CAS
Google Scholar
Kong Q. Lin C-lG. Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci. 2010;67(11):1817–29.
Article
CAS
Google Scholar
Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Bio. 2007;8(9):722.
Article
CAS
Google Scholar
Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development. 2014;141(22):4206–18.
Article
CAS
Google Scholar
Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal. 2014;20(6):1000–37.
Article
CAS
Google Scholar
Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J. 1999;342(3):481–96.
Article
CAS
Google Scholar
Mostertz J, Scharf C, Hecker M, Homuth G. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology. 2004;150(2):497–512.
Article
CAS
Google Scholar
Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 2005;139(2):806–21.
Article
CAS
Google Scholar
Vandenbroucke K, Robbens S, Vandepoele K, Inzé D, Van de Peer Y, Van Breusegem F. Hydrogen peroxide–induced gene expression across kingdoms: a comparative analysis. Mol Biol Evol. 2008;25(3):507–16.
Article
CAS
Google Scholar
Niveditha S, Deepashree S, Ramesh S, Shivanandappa T. Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster. J Comp Physiol B. 2017;187(7):899–909.
Article
CAS
Google Scholar
Borrás C, Sastre J, García-Sala D, Lloret A, Pallardó FV, Viña J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med. 2003;34(5):546–52.
Article
CAS
Google Scholar
Kayali R, Çakatay U, Tekeli F. Male rats exhibit higher oxidative protein damage than females of the same chronological age. Mech Ageing Dev. 2007;128(5–6):365–9.
Article
CAS
Google Scholar
Gómez-Pérez Y, Gianotti M, Lladó I, Proenza AM. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress. Pancreas. 2011;40(5):682–8.
Article
CAS
Google Scholar
Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024–32.
Article
Google Scholar
Tower J. Sex-specific gene expression and life span regulation. Trends Endocrinol Metab. 2017;28(10):735–47.
Article
CAS
Google Scholar
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.
Article
CAS
Google Scholar
Dröge W. Oxidative stress and aging. In: Roach RC, Wagner PD, Hackett PH, editors. Hypoxia: Through the Lifecycle. Springer Science & Business Media; 2003. p. 191–200.
Vermeulen C, Van De Zande L, Bijlsma R. Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster. Biogerontology. 2005;6(6):387–95.
Article
CAS
Google Scholar
Neki N. Oxidative stress and aging. Bangladesh J Med Sci. 2015;14(3):221–7.
Article
Google Scholar
Barreto FS, Watson ET, Lima TG, Willett CS, Edmands S, Li W, Burton RS. Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nat Ecol Evol. 2018;2(8):1250–7.
Article
Google Scholar
Ar-rushdi AH. The cytology of achiasmatic meiosis in the female Tigriopus (Copepoda). Chromosoma. 1962;13(5):526–39.
Article
Google Scholar
Voordouw MJ, Anholt BR. Heritability of sex tendency in a harpacticoid copepod, Tigriopus californicus. Evolution. 2002;56(9):1754–63.
Article
Google Scholar
Alexander H, Richardson J, Anholt B. Multigenerational response to artificial selection for biased clutch sex ratios in Tigriopus californicus populations. J Evol Biol. 2014;27(9):1921–9.
Article
CAS
Google Scholar
Alexander H, Richardson J, Edmands S, Anholt B. Sex without sex chromosomes: genetic architecture of multiple loci independently segregating to determine sex ratios in the copepod Tigriopus californicus. J Evol Biol. 2015;28(12):2196–207.
Article
CAS
Google Scholar
Isensee J, Witt H, Pregla R, Hetzer R, Regitz-Zagrosek V, Noppinger PR. Sexually dimorphic gene expression in the heart of mice and men. J Mol Med. 2008;86(1):61–74.
Article
Google Scholar
Spigler RB, Lewers KS, Ashman TL. Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome. Evolution. 2011;65(4):1114–26.
Article
Google Scholar
Disteche CM. Dosage compensation of the sex chromosomes. Annu Rev Genet. 2012;46:537–60.
Article
CAS
Google Scholar
Hill GE. Sex linkage of nuclear-encoded mitochondrial genes. Heredity (Edinb). 2013;112:469–70.
Article
CAS
Google Scholar
Dean R, Zimmer F, Mank JE. The potential role of sexual conflict and sexual selection in shaping the genomic distribution of Mito-nuclear genes. Genome Biol Evol. 2014;6(5):1096–104.
Article
CAS
Google Scholar
Willett CS. Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus. Evolution. 2010;64(9):2521–34.
Article
Google Scholar
Kelly MW, Sanford E, Grosberg RK. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc R Soc B. 2012;279(1727):349–56.
Article
Google Scholar
Foley HB, Sun PY, Ramirez R, So BK, Venkataraman YR, Nixon EN, Davies KJA, Edmands S. Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Exp Gerontol. 2019;119:146–56.
Article
CAS
Google Scholar
Li N, Arief N, Edmands S. Effects of oxidative stress on sex-specific gene expression in the copepod Tigriopus californicus revealed by single individual RNA-seq. Comp Biochem Physiol D. 2019;31:100608.
Lucau-Danila A, Lelandais G, Kozovska Z, Tanty V, Delaveau T, Devaux F, Jacq C. Early expression of yeast genes affected by chemical stress. Mol Cell Biol. 2005;25(5):1860–8.
Article
CAS
Google Scholar
Pomatto LC, Carney C, Shen B, Wong S, Halaszynski K, Salomon MP, Davies KJ, Tower J. The mitochondrial Lon protease is required for age-specific and sex-specific adaptation to oxidative stress. Curr Biol. 2017;27(1):1–15.
Article
CAS
Google Scholar
Abele-Oeschger D, Sartoris FJ, Pörtner HO. Hydrogen peroxide causes a decrease in aerobic metabolic rate and in intracellular pH in the shrimp Crangon crangon. Comp Biochem Physiol C. 1997;117(2):123–9.
Google Scholar
Suntres ZE. Role of antioxidants in paraquat toxicity. Toxicology. 2002;180(1):65–77.
Article
CAS
Google Scholar
Pomeroy A. Biochemical mechanisms of paraquat toxicity. London: Academic; 2012.
Graham AM, Barreto FS. Loss of the HIF pathway in a widely distributed intertidal crustacean, the copepod Tigriopus californicus. Proc Natl Acad Sci U S A. 2019;116(26):12913–8.
Article
CAS
Google Scholar
DeBiasse MB, Kawji Y, Kelly MW. Phenotypic and transcriptomic responses to salinity stress across genetically and geographically divergent Tigriopus californicus populations. Mol Ecol. 2018;27(7):1621–32.
Article
CAS
Google Scholar
Lima TG, Willett CS. Locally adapted populations of a copepod can evolve different gene expression patterns under the same environmental pressures. Ecol Evol. 2017;7(12):4312–25.
Article
Google Scholar
Pereira RJ, Barreto FS, Pierce NT, Carneiro M, Burton RS. Transcriptome-wide patterns of divergence during allopatric evolution. Mol Ecol. 2016;25(7):1478–93.
Article
CAS
Google Scholar
Schoville SD, Barreto FS, Moy GW, Wolff A, Burton RS. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus. BMC Evol Biol. 2012;12(1):170.
Article
CAS
Google Scholar
Barreto FS, Moy GW, Burton RS. Interpopulation patterns of divergence and selection across the transcriptome of the copepod Tigriopus californicus. Mol Ecol. 2011;20(3):560–72.
Article
Google Scholar
Rajkumar AP, Qvist P, Lazarus R, Lescai F, Ju J, Nyegaard M, Mors O, Børglum AD, Li Q, Christensen JH. Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genomics. 2015;16(1):548.
Article
CAS
Google Scholar
Mary-Huard T, Daudin JJ, Baccini M, Biggeri A, Bar-Hen A. Biases induced by pooling samples in microarray experiments. Bioinformatics. 2007;23(13):i313–8.
Article
CAS
Google Scholar
Kendziorski C, Irizarry R, Chen KS, Haag J, Gould M. On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci U S A. 2005;102(12):4252–7.
Article
CAS
Google Scholar
Liu Y, Zhou J, White KP. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics. 2013;30(3):301–4.
Article
CAS
Google Scholar
Williams AG, Thomas S, Wyman SK, Holloway AK. RNA-seq data: challenges in and recommendations for experimental design and analysis. Curr Protoc Hum Genet. 2014;83(1):11–3.
Google Scholar
Scandalios J. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res. 2005;38(7):995–1014.
Article
CAS
Google Scholar
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9.
Article
CAS
Google Scholar
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2015;15(1):71.
Article
CAS
Google Scholar
Kim BM, Rhee JS, Jeong CB, Seo JS, Park GS, Lee YM, Lee JS. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp Biochem Physiol C. 2014;166:65–74.
CAS
Google Scholar
Poley JD, Sutherland BJ, Jones SR, Koop BF, Fast MD. Sex-biased gene expression and sequence conservation in Atlantic and Pacific salmon lice (Lepeophtheirus salmonis). BMC Genomics. 2016;17(1):483.
Article
CAS
Google Scholar
Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR. Genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A. 2013;110(4):1387–92.
Article
CAS
Google Scholar
Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol Ecol. 2015;24(3):610–27.
Article
CAS
Google Scholar
Chen N, Huang Z, Lu C, Shen Y, Luo X, Ke C, You W. Different Transcriptomic responses to thermal stress in heat-tolerant and heat-sensitive Pacific abalones indicated by cardiac performance. Front Physiol. 2019;9:1895.
Article
Google Scholar
Han J, Jeong CB, Byeon E, Lee JS. Effects of temperature changes on the generation of reactive oxygen species and the expression and activity of glutathione-S transferases in two congeneric copepods Tigriopus japonicus and Tigriopus kingsejongensis. Fisheries Sci. 2018;84(5):815–23.
Article
CAS
Google Scholar
Lee KW, Raisuddin S, Rhee JS, Hwang DS, Yu IT, Lee YM, Park HG, Lee JS. Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals. Aquat Toxicol. 2008;89(3):158–66.
Article
CAS
Google Scholar
Lee YM, Lee KW, Park H, Park HG, Raisuddin S, Ahn IY, Lee JS. Sequence, biochemical characteristics and expression of a novel sigma-class of glutathione S-transferase from the intertidal copepod, Tigriopus japonicus with a possible role in antioxidant defense. Chemosphere. 2007;69(6):893–902.
Article
CAS
Google Scholar
Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.
Article
CAS
Google Scholar
Tauffenberger A, Fiumelli H, Almustafa S, Magistretti PJ. Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Cell Death Dis. 2019;10(9):1–16.
Article
CAS
Google Scholar
Dethier MN. Tidepools as refuges: predation and the limits of the harpacticoid copepod Tigriopus californicus (baker). J Exp Mar Biol Ecol. 1980;42(2):99–111.
Article
Google Scholar
Burton RS. Mating system of the intertidal copepod Tigriopus californicus. Mar Biol. 1985;86(3):247–52.
Article
Google Scholar
Hou Z, Jiang P, Swanson SA, Elwell AL, Nguyen BKS, Bolin JM, Stewart R, Thomson JA. A cost-effective RNA sequencing protocol for large-scale gene expression studies. Sci Rep. 2015;5:9570.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300.
Google Scholar
Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R Package Version. 2010;2:2010.
Google Scholar
Hoffman GE, Schadt EE. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics. 2016;17(1):483.
Article
Google Scholar