Song F, Chen C, Wu S, Shao E, Li M, Guan X, Huang Z. Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation. Sci Rep. 2016;6:23861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fand BB, Sul NT, Bal SK, Minhas PS. Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle Modelling and spatial mapping. PLoS One. 2015;10(4):e0124682.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng T, Wu J, Wu Y, Chilukuri RV, Huang L, Yamamoto K, Feng L, Li W, Chen Z, Guo H, et al. Genomic adaptation to polyphagy and insecticides in a major east Asian noctuid pest. Nature Ecol Evol. 2017;1(11):1747–56.
Article
Google Scholar
Renard G, K. L: New global research alliance joins fight against fall armyworm. In. https://www.cimmyt.org/press_release/new-global-alliance-formed-to-fight-against-fall-armyworm/; Sep 26, 2018.
Mithofer A, Boland W. Recognition of herbivory-associated molecular patterns. Plant Physiol. 2008;146(3):825–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH 3rd, Teal PE. Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci U S A. 2009;106(2):653–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiep V, Vadassery J, Lattke J, Maass JP, Boland W, Peiter E, Mithofer A. Systemic cytosolic Ca(2+) elevation is activated upon wounding and herbivory in Arabidopsis. New Phytologist. 2015;207(4):996–1004.
Article
CAS
Google Scholar
Consales F, Schweizer F, Erb M, Gouhier-Darimont C, Bodenhausen N, Bruessow F, Sobhy I, Reymond P. Insect oral secretions suppress wound-induced responses in Arabidopsis. J Exp Bot. 2012;63(2):727–37.
Article
CAS
PubMed
Google Scholar
Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, Cui F, Castaneto M, Poulain J, Dossat C, et al. Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. J Proteome Res. 2011;10(4):1505–18.
Article
CAS
PubMed
Google Scholar
Bos JI, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet. 2010;6(11):e1001216.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen MS, Zhao HX, Zhu YC, Scheffler B, Liu X, Liu X, Hulbert S, Stuart JJ. Analysis of transcripts and proteins expressed in the salivary glands of hessian fly (Mayetiola destructor) larvae. J Insect Physiol. 2008;54(1):1–16.
Article
CAS
PubMed
Google Scholar
DeLay B, Mamidala P, Wijeratne A, Wijeratne S, Mittapalli O, Wang J, Lamp W. Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae. J Insect Physiol. 2012;58(12):1626–34.
Article
CAS
PubMed
Google Scholar
Ji R, Yu H, Fu Q, Chen H, Ye W, Li S, Lou Y. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PLoS One. 2013;8(11):e79612.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matsumoto Y, Suetsugu Y, Nakamura M, Hattori M. Transcriptome analysis of the salivary glands of Nephotettix cincticeps (Uhler). J Insect Physiol. 2014;71:170–6.
Article
CAS
PubMed
Google Scholar
Zhang Y, Fan J, Sun J, Francis F, Chen J. Transcriptome analysis of the salivary glands of the grain aphid, Sitobion avenae. Sci Rep. 2017;7(1):15911.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye W, Yu H, Jian Y, Zeng J, Ji R, Chen H, Lou Y. A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice. Sci Rep. 2017;7:40498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji R, Ye W, Chen H, Zeng J, Li H, Yu H, Li J, Lou Y. A salivary Endo-beta-1,4-Glucanase acts as an effector that enables the Brown Planthopper to feed on Rice. Plant Physiol. 2017;173(3):1920–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu HX, Qian LX, Wang XW, Shao RX, Hong Y, Liu SS, Wang XW. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc Natl Acad Sci U S A. 2019;116(2):490–5.
Article
CAS
PubMed
Google Scholar
Villarroel CA, Jonckheere W, Alba JM, Glas JJ, Dermauw W, Haring MA, Van Leeuwen T, Schuurink RC, Kant MR. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. Plant J. 2016;86(2):119–31.
Article
CAS
PubMed
Google Scholar
Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW. Herbivory: caterpillar saliva beats plant defences. Nature. 2002;416(6881):599–600.
Article
CAS
PubMed
Google Scholar
Wu S, Peiffer M, Luthe DS, Felton GW. ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses. PLoS One. 2012;7(7):e41947.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CY, Liu YQ, Song WM, Chen DY, Chen FY, Chen XY, Chen ZW, Ge SX, Wang CZ, Zhan S, et al. An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci U S A. 2019;116(28):14331–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parthasarathy R, Gopinathan KP. Comparative analysis of the development of the mandibular salivary glands and the labial silk glands in the mulberry silkworm, Bombyx mori. Gene Expr Patterns. 2005;5(3):323–39.
Article
CAS
PubMed
Google Scholar
Zebelo S, Piorkowski J, Disi J, Fadamiro H. Secretions from the ventral eversible gland of Spodoptera exigua caterpillars activate defense-related genes and induce emission of volatile organic compounds in tomato, Solanum lycopersicum. BMC Plant Biol. 2014;14:140.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vegliante F, Hasenfuss I: Morphology and Diversity of Exocrine Glands in Lepidopteran Larvae. Annual Review of Entomology, Vol 57 2012, 57:187–204.
Min XJ. Evaluation of computational methods for secreted protein prediction in different eukaryotes. J Proteomics Bioinformatics. 2010;3:143–7.
CAS
Google Scholar
Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RH, Zody MC, Kunjeti SG, Donofrio NM, et al. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science. 2010;330(6010):1540–3.
Article
CAS
PubMed
Google Scholar
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghanim M, Rosell RC, Campbell LR, Czosnek H, Brown JK, Ullman DE. Digestive, salivary, and reproductive organs of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) B type. J Morphol. 2001;248(1):22–40.
Article
CAS
PubMed
Google Scholar
Hogenhout SA, Bos JI. Effector proteins that modulate plant--insect interactions. Curr Opin Plant Biol. 2011;14(4):422–8.
Article
CAS
PubMed
Google Scholar
Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 2006;124(4):803–14.
Article
CAS
PubMed
Google Scholar
Win J, Chaparro-Garcia A, Belhaj K, Saunders DG, Yoshida K, Dong S, Schornack S, Zipfel C, Robatzek S, Hogenhout SA, et al. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb Symp Quant Biol. 2012;77:235–47.
Article
CAS
PubMed
Google Scholar
Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW. Cues from chewing insects - the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr Opin Plant Biol. 2015;26:80–6.
Article
CAS
PubMed
Google Scholar
Zhao C, Escalante LN, Chen H, Benatti TR, Qu J, Chellapilla S, Waterhouse RM, Wheeler D, Andersson MN, Bao R, et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Current Biol. 2015;25(5):613–20.
Article
CAS
Google Scholar
Bennett RN, Wallsgrove RM. Secondary metabolites in plant defence mechanisms. New Phytol. 1994;127:617–33.
Article
CAS
PubMed
Google Scholar
Niemeyer HM, E. P, Copaja SV, Bravo HR, Franke S, Francke W: Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochemistry 1989, 28(2):447–449.
Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, Glauser G, Erb M, Flors V, Frey M, et al. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol. 2011;157(1):317–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, Dicke M. Differential costs of two distinct resistance mechanisms induced by different herbivore species in Arabidopsis. Plant Physiol. 2016;170(2):891–906.
Article
CAS
PubMed
Google Scholar
Ryan CA. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol. 1990;28(1):425–49.
Article
CAS
Google Scholar
Celorio-Mancera Mde L, Courtiade J, Muck A, Heckel DG, Musser RO, Vogel H. Sialome of a generalist lepidopteran herbivore: identification of transcripts and proteins from Helicoverpa armigera labial salivary glands. PLoS One. 2011;6(10):e26676.
Article
PubMed
CAS
Google Scholar
Will T, Tjallingii WF, Thonnessen A, van Bel AJ. Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci U S A. 2007;104(25):10536–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandermoten S, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E, Francis F. Comparative analyses of salivary proteins from three aphid species. Insect Mol Biol. 2014;23(1):67–77.
Article
CAS
PubMed
Google Scholar
Louis J, Peiffer M, Ray S, Luthe DS, Felton GW. Host-specific salivary elicitor(s) of European corn borer induce defenses in tomato and maize. New Phytologist. 2013;199(1):66–73.
Article
CAS
Google Scholar
Calvo E, Mans BJ, Andersen JF, Ribeiro JM. Function and evolution of a mosquito salivary protein family. J Biol Chem. 2006;281(4):1935–42.
Article
CAS
PubMed
Google Scholar
Celorio-Mancera Mde L, Sundmalm SM, Vogel H, Rutishauser D, Ytterberg AJ, Zubarev RA, Janz N. Chemosensory proteins, major salivary factors in caterpillar mandibular glands. Insect Biochem Mol Biol. 2012;42(10):796–805.
Article
PubMed
CAS
Google Scholar
Meena MK, Prajapati R, Krishna D, Divakaran K, Pandey Y, Reichelt M, Mathew MK, Boland W, Mithöfer A, Vadassery J: Cyclic nucleotide gated channel 19 (CNGC19) is an important Ca2+ channel regulating Arabidopsis defense against Spodoptera herbivory. Plant Cell 2019; 31(7):1539-1562.
Musser RO, Farmer E, Peiffer M, Williams SA, Felton GW. Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect-plant interactions. J Chem Ecol. 2006;32(5):981–92.
Article
CAS
PubMed
Google Scholar
Satoh D, Horii A, Ochiai M, Ashida M. Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori. Purification, characterization, and cDNA cloning. J Biol Chem. 1999;274(11):7441–53.
Article
CAS
PubMed
Google Scholar
Kanost MR, Jiang H. Clip-domain serine proteases as immune factors in insect hemolymph. Current Opinion Insect Sci. 2015;11:47–55.
Article
Google Scholar
Francischetti IM, Lopes AH, Dias FA, Pham VM, Ribeiro JM. An insight into the sialotranscriptome of the seed-feeding bug, Oncopeltus fasciatus. Insect Biochem Mol Biol. 2007;37(9):903–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shukle RH, Mittapalli O, Morton PK, Chen MS. Characterization and expression analysis of a gene encoding a secreted lipase-like protein expressed in the salivary glands of the larval hessian fly, Mayetiola destructor (say). J Insect Physiol. 2009;55(2):104–11.
Article
CAS
PubMed
Google Scholar
Tunaz H, Stanley DW. Phospholipase A2 in salivary glands isolated from tobacco hornworms, Manduca sexta. Comparative Biochem Physiol Part B, Biochem Molecular Biol. 2004;139(1):27–33.
Article
CAS
Google Scholar
Blumke A, Falter C, Herrfurth C, Sode B, Bode R, Schafer W, Feussner I, Voigt CA. Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection. Plant Physiol. 2014;165(1):346–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schafer M, Fischer C, Meldau S, Seebald E, Oelmuller R, Baldwin IT. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol. 2011;156(3):1520–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bargmann BO, Munnik T. The role of phospholipase D in plant stress responses. Curr Opin Plant Biol. 2006;9(5):515–22.
Article
CAS
PubMed
Google Scholar
Kusnierczyk A, Winge P, Jorstad TS, Troczynska J, Rossiter JT, Bones AM. Towards global understanding of plant defence against aphids--timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ. 2008;31(8):1097–115.
Article
CAS
PubMed
Google Scholar
Kundu A, Mishra S, Vadassery J. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Planta. 2018;248(4):981–97.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Article
CAS
PubMed
Google Scholar
Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 2001;17(7):646–53.
Article
CAS
PubMed
Google Scholar
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300(4):1005–16.
Article
CAS
PubMed
Google Scholar
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Research. 2007;35(Web Server issue):W585–7.
Article
PubMed
PubMed Central
Google Scholar
Saunders DG, Win J, Cano LM, Szabo LJ, Kamoun S, Raffaele S. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS One. 2012;7(1):e29847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Yuan M, Gao X, Kang T, Zhan S, Wan H, Li J. Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS One. 2013;8(7):e68059.
Article
CAS
PubMed
PubMed Central
Google Scholar