Little DC, Newton RW, Beveridge MC. Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential. Proc Nutr Soc. 2016;75(3):274–86.
Article
CAS
PubMed
Google Scholar
Hamre, J., E. Johnsen and K. Hamre. A new model for simulating growth in fish. 2014;PeerJ(2):e244.
Al-Tobasei R, Ali A, Leeds TD, Liu S, Palti Y, Kenney B, Salem M. Identification of SNPs associated with muscle yield and quality traits using allelic-imbalance analyses of pooled RNA-Seq samples in rainbow trout. BMC Genomics. 2017;18(1):582.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leeds TD, Vallejo RL, Weber GM, Pena DG, Silverstein JS. Response to five generations of selection for growth performance traits in rainbow trout (Oncorhynchus mykiss). Aquaculture. 2016;465:341–51.
Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26(9):493–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng Q, Chen WD, Wang YD. Gut microbiota: an integral moderator in health and disease. Front Microbiol. 2018;9:151.
Article
PubMed
PubMed Central
Google Scholar
Butt RL, Volkoff H. Gut microbiota and energy homeostasis in fish. Front Endocrinol (Lausanne). 2019;10:9.
Article
Google Scholar
Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24.
Article
CAS
PubMed
Google Scholar
Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, Deelen P, Vatanen T, Schirmer M, Smeekens SP, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48(11):1407–12.
Article
CAS
PubMed
Google Scholar
Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The gut microbiota of marine fish. Front Microbiol. 2018;9:873.
Article
PubMed
PubMed Central
Google Scholar
Mohajeri MH, La Fata G, Steinert RE, Weber P. Relationship between the gut microbiome and brain function. Nutr Rev. 2018;76(7):481–96.
Article
PubMed
Google Scholar
Picca A, Fanelli F, Calvani R, Mule G, Pesce V, Sisto A, Pantanelli C, Bernabei R, Landi F, Marzetti E. Gut Dysbiosis and muscle aging: searching for novel targets against sarcopenia. Mediat Inflamm. 2018;2018:7026198.
Article
CAS
Google Scholar
Grosicki GJ, Fielding RA, Lustgarten MS. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle Axis. Calcif Tissue Int. 2018;102(4):433–42.
Article
CAS
PubMed
Google Scholar
Dugas LR, Lie L, Plange-Rhule J, Bedu-Addo K, Bovet P, Lambert EV, Forrester TE, Luke A, Gilbert JA, Layden BT. Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-microbiome study protocol. BMC Public Health. 2018;18(1):978.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients. 2019 Aug 18;11(8):1943. https://doi.org/10.3390/nu11081943.
Salem M, Kenney PB, Rexroad CE, Yao J. Molecular characterization of muscle atrophy and proteolysis associated with spawning in rainbow trout. Comp Biochem Physiol Part D Genomics Proteomics. 2006;1(2):227–37.
Article
PubMed
CAS
Google Scholar
Argiles JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Manas L. Skeletal muscle regulates metabolism via Interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc. 2016;17(9):789–96.
Article
PubMed
Google Scholar
Nagaraju K. Immunological capabilities of skeletal muscle cells. Acta Physiol Scand. 2001;171(3):215–23.
Article
CAS
PubMed
Google Scholar
Magnoni LJ, Roher N, Crespo D, Krasnov A, Planas JV. In Vivo Molecular Responses of Fast and Slow Muscle Fibers to Lipopolysaccharide in a Teleost Fish, the Rainbow Trout (Oncorhynchus mykiss). Biology (Basel). 2015;4(1):67–87.
Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, Cox LM, Selkrig J, Posma JM, Zhang H, Padmanabhan P, Moret C, Gulyás B, Blaser MJ, Auwerx J, Holmes E, Nicholson J, Wahli W, Pettersson S. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 2019;11(502).
Shanahan F, van Sinderen D, O'Toole PW, Stanton C. Feeding the microbiota: transducer of nutrient signals for the host. Gut. 2017;66(9):1709–17.
Article
CAS
PubMed
Google Scholar
Kokou F, Sasson G, Nitzan T, Doron-Faigenboim A, Harpaz S, Cnaani A, Mizrahi I: Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. Elife. 2018;7.
Smith CC, Snowberg LK, Gregory Caporaso J, Knight R, Bolnick DI. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 2015;9(11):2515–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chapagain P, Arivett B, Cleveland BM, Walker DM, Salem M. Analysis of the fecal microbiota of fast- and slow-growing rainbow trout (Oncorhynchus mykiss). BMC Genomics. 2019;20(1):788.
Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20(4):593–621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 2019;17(3):156–66.
Mayhew JW, Onderdonk AB, Gorbach SL. Effects of time and growth media on short-chain fatty acid production by Bacteroides fragilis. Appl Microbiol. 1975;29(4):472–5.
Tuner K, Baron EJ, Summanen P, Finegold SM. Cellular fatty acids in Fusobacterium species as a tool for identification. J Clin Microbiol. 1992;30(12):3225–9.
Michl SC, Ratten JM, Beyer M, Hasler M, LaRoche J, Schulz C. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): diet-dependent shifts of bacterial community structures. PLoS One. 2017;12(5):e0177735.
Navarrete P, Magne F, Araneda C, Fuentes P, Barros L, Opazo R, Espejo R, Romero J. PCR-TTGE analysis of 16S rRNA from rainbow trout (Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria. PLoS One. 2012;7(2):e31335.
Larsen AM, Mohammed HH, Arias CR. Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol. 2014;116(6):1396–404.
Article
CAS
PubMed
Google Scholar
Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011;5(10):1595–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang YM, Wong TY, Chen LY, Lin CS, Liu JK. Induction of a futile Embden-Meyerhof-Parnas pathway in Deinococcus radiodurans by Mn: possible role of the pentose phosphate pathway in cell survival. Appl Environ Microbiol. 2000;66(1):105–12.
Narrowe AB, Albuthi-Lantz M, Smith EP, Bower KJ, Roane TM, Vajda AM, Miller CS. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure. Microbiome. 2015;3:6.
Article
PubMed
PubMed Central
Google Scholar
Shen H, Zang Y, Song K, Ma Y, Dai T, Serwadda A. A meta-transcriptomics survey reveals changes in the microbiota of the Chinese mitten crab Eriocheir sinensis infected with Hepatopancreatic necrosis disease. Front Microbiol. 2017;8:732.
Sakai M, Yoshida T, Astuta S, Kobayashi M. Enhancement of resistance to vibriosis in rainbow trout, Oncorhynchus mykiss (Walbaum) by oral administration of Clostridium butyricum bacteria. J Fish Dis. 1995;18:187–90.
Article
Google Scholar
Taoka Y, Maeda H, Jo J-Y, Jeon M-J, Bai SC, Lee W-J, Yuge K, Koshio S. Growth, stress tolerance and non-specific immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system. Fisheries Science. 2006;72:310–21.
Article
CAS
Google Scholar
Nikitin DI, Strompl C, Oranskaya MS, Abraham WR. Phylogeny of the ring-forming bacterium Arcicella aquatica gen. nov., sp. nov. (ex Nikitin et al. 1994), From a freshwater neuston biofilm. Int J Syst Evol Microbiol. 2004;54(Pt 3):681–4.
Wang C, Sun G, Li S, Li X, Liu Y. Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system. J Oceanol Limnol. 2018;36:414–26.
Article
CAS
Google Scholar
Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–21.
Article
PubMed
Google Scholar
Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Munoz-Tamayo R, Paslier DL, Nalin R, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11(10):2574–84.
Article
PubMed
Google Scholar
Wang J, Lang T, Shen J, Dai J, Tian L, Wang X. Core gut Bacteria analysis of healthy mice. Front Microbiol. 2019;10:887.
Article
PubMed
PubMed Central
Google Scholar
Sugita H, Miyajima C, Deguchi Y. The vitamin B12-producing ability of intestinal bacteria isolated from tilapia and channel catfish. Nippon Suisan Gakkaishi. 1989;4:701.
Frampton J, Murphy KG, Frost G, Chambers ES. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab. 2020;2(9):840–8.
Article
CAS
PubMed
Google Scholar
Hyun DW, Shin NR, Kim MS, Kim JY, Kim PS, Oh SJ, Whon TW, Bae JW. Cloacibacterium haliotis sp. nov., isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol. 2014;64(Pt 1):72–7.
Tyagi A, Singh B, Billekallu Thammegowda NK, Singh NK. Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome. Arch Microbiol. 2019;201(3):295–303.
Article
CAS
PubMed
Google Scholar
Llewellyn MS, McGinnity P, Dionne M, Letourneau J, Thonier F, Carvalho GR, Creer S, Derome N. The biogeography of the Atlantic salmon (Salmo salar) gut microbiome. ISME J. 2016;10(5):1280–4.
Kirchhoff H, PB, fischer M, Flossdorf J, Heitmann J, Khattab B, Lopatta D, Rosengarten R, GS, Yousef C. Mycoplasma mobile sp. nov., a New Species from Fish. Int J Syst Bacteriol. 1987;37:192–7.
Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5.
Article
Google Scholar
Ali A, Al-Tobasei R, Kenney B, Leeds TD, Salem M. Integrated analysis of lncRNA and mRNA expression in rainbow trout families showing variation in muscle growth and fillet quality traits. Sci Rep. 2018;8(1):12111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lustgarten MS. The role of the gut microbiome on skeletal muscle mass and physical function: 2019 update. Front Physiol. 2019;10:1435.
Article
PubMed
PubMed Central
Google Scholar
Hu J, Lin S, Zheng B, Cheung PCK. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr. 2018;58(8):1243–9.
Article
CAS
PubMed
Google Scholar
Bui TP, Ritari J, Boeren S, de Waard P, Plugge CM, de Vos WM. Production of butyrate from lysine and the amadori product fructoselysine by a human gut commensal. Nat Commun. 2015;6:10062.
Barker HA, Kahn JM, Hedrick L. Pathway of lysine degradation in Fusobacterium nucleatum. J Bacteriol. 1982;152(1):201–7.
Cabrera-Mulero A, Tinahones A, Bandera B, Moreno-Indias I, Macias-Gonzalez M, Tinahones FJ. Keto microbiota: a powerful contributor to host disease recovery. Rev Endocr Metab Disord. 2019;20(4):415–25.
Article
PubMed
PubMed Central
Google Scholar
Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol. 2017;595(9):2857–71.
Article
CAS
PubMed
Google Scholar
McGlory C, Calder PC, Nunes EA. The influence of Omega-3 fatty acids on skeletal muscle protein turnover in health, disuse, and disease. Front Nutr. 2019;6:144.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tallima H, El Ridi R. Arachidonic acid: physiological roles and potential health benefits - a review. J Adv Res. 2018;11:33–41.
Article
CAS
PubMed
Google Scholar
Tilocca B, Burbach K, Heyer CME, Hoelzle LE, Mosenthin R, Stefanski V, Camarinha-Silva A, Seifert J. Dietary changes in nutritional studies shape the structural and functional composition of the pigs' fecal microbiome-from days to weeks. Microbiome. 2017;5(1):144.
Article
PubMed
PubMed Central
Google Scholar
Leskawa KC, Erwin RE, Buse PE, Hogan EL. Glycosphingolipid biosynthesis during myogenesis of rat L6 cells in vitro. Mol Cell Biochem. 1988;83(1):47–54.
Article
CAS
PubMed
Google Scholar
Papini N, Anastasia L, Tringali C, Dileo L, Carubelli I, Sampaolesi M, Monti E, Tettamanti G, Venerando B. MmNEU3 sialidase over-expression in C2C12 myoblasts delays differentiation and induces hypertrophic myotube formation. J Cell Biochem. 2012;113(9):2967–78.
Article
CAS
PubMed
Google Scholar
Lipina C, Hundal HS. Lipid modulation of skeletal muscle mass and function. J Cachexia Sarcopenia Muscle. 2017;8(2):190–201.
Article
PubMed
Google Scholar
Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM, Gonzalez FJ, Chiang JY. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta. 2015;1851(1):19–29.
Article
CAS
PubMed
Google Scholar
Vítek L, ; Haluzík, M.: The role of bile acids in metabolic regulation. J Endocrinol 2016, 3:85–96.
Article
CAS
Google Scholar
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
ILLUMINA: Miseq System Guide. In., vol. Document # 1000000061014 v00 2018.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
Kowallik V, Miller E, Greig D. The interaction of Saccharomyces paradoxus with its natural competitors on oak bark. Mol Ecol. 2015;24(7):1596–610.
Carlsen T, Aas AB, Lindner D, Vrålstad T, Schumacher T, Kauserud H. Don’t make a mista(g)ke: is tag switching an overlooked source of error in amplicon pyrosequencing studies? Fungal Ecol. 2012;5:747–9.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.
Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
Article
PubMed
PubMed Central
Google Scholar
Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H. Fungal community analysis by high-throughput sequencing of amplified markers--a user's guide. New Phytol. 2013;199(1):288–99.
Walker DM, Leys JE, Grisnik M, Grajal-Puche A, Murray CM, Allender MC. Variability in snake skin microbial assemblages across spatial scales and disease states. ISME J. 2019;13(9):2209–22.
Article
PubMed
PubMed Central
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H: vegan: community ecology package. R package version 2.5–2. In.; 2018: https://CRAN.R-project.org/package=vegan.
H. W: The split-apply-combine strategy for data analysis. J Stat Softw. In.; 2011: 1–29. http://www.jstatsoft.org/v40/i01/URL.
Wickham H FR, Henry L, Müller K: dplyr: A grammar of data manipulation. R package version 0.7.6. . In.; 2018: https://CRAN.R-project.org/package=dplyr.
Hadley Wickham, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, Dunnington D: ggplot2: Create elegant data visualisations using the grammar of graphics, R Package version 3.3.0: https://cran.r-project.org/web/packages/ggplot2. 2020.
Brockhoff B. lmerTest v2.0-36 https://www.rdocumentation.org/packages/lmerTest.
Barton K: Multi-Model Inference:R package version 1.43.15,. In.: https://cran.r-project.org/package=MuMIn; 2019-12-19.
Douglas Bates, Martin Maechler, Ben Bolker, Steven Walker, Rune Haubo Bojesen Christensen, Henrik Singmann, Bin Dai, Fabian Scheipl, Gabor Grothendieck, Peter Green et al: Package lme4. R package version 1.1–21 . https://cran.r-project.org/web/packages/lme4/index.html. 2019.
Asshauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31(17):2882–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mangiafico S: rcompanion: Functions to support extension education program evaluation, R package version 2.0.10. https://CRAN.R-project.org/package=rcompanion. 2019.
Murrell P. R graphics. Chapman & Hall: CRC Press; 2005.
Book
Google Scholar
Wickham H: Tidyverse: R package version 1.3.0. In.: https://cran.r-project.org/package=tidyverse; 2019-11-21..
Bates, D, M, M, B, B, al. e: Package lme4. R package version 1.1–7. https://cran.r-project.org/web/packages/lme4/index.html. 2014.
Oksanen, J, B, FG, F, M, al. e: Vegan: Community Ecology Package. R package version 2.5–2. 2018.
Wickham H. ggplot2: Elegant graphics for dData analysis. New York: Springer-Verlag; 2016.
Kold R. pheatmap: pretty heatmaps R package version 1.0.8; 2015.
Google Scholar