Gadanho M, Sampaio JP. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodotorula: Rh. glutinis sensu stricto and Rh. dairenensis comb. nov. FEMS Yeast Res. 2002;2(1):47–58.
CAS
PubMed
Google Scholar
Sampaio JP: Chapter 155 - Rhodotorula Harrison (1928). In Kurtzman CP, Fell JW, Boekhout T (eds): the yeasts (5th edition). In. London: Elsevier; 2011: 1873–1927.
Tang W, Wang Y, Zhang J, Cai Y, He Z. Biosynthetic pathway of carotenoids in Rhodotorula and strategies for enhanced their production. J Microbiol Biotechnol. 2019;29(4):507.
Article
CAS
PubMed
Google Scholar
Lyman M, Urbin S, Stroutand C, Rubinfeld B. The oleaginous red yeast Rhodotorula/Rhodosporidium: a factory for industrial bioproducts: yeasts in biotechnology. In. London: IntechOpen; 2019.
Google Scholar
Kuan I, Kao W, Chen C, Yu C. Microbial biodiesel production by direct transesterification of Rhodotorula glutinis biomass. Energies. 2018;11(5):1036.
Article
CAS
Google Scholar
Martínez JM, Schottroff F, Haas K, et al. Evaluation of pulsed electric fields technology for the improvement of subsequent carotenoid extraction from dried Rhodotorula glutinis yeast. Food Chem. 2020;323:126824.
Article
PubMed
CAS
Google Scholar
Gong G, Gong G, Liu L, et al. Multi-omics metabolism analysis on irradiation-induced oxidative stress to Rhodotorula glutinis. Appl Microbiol Biot. 2019;103(1):361–74.
Article
CAS
Google Scholar
Easterling ER, French WT, Hernandez R, Licha M. The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol. 2009;100(1):356–61.
Article
CAS
PubMed
Google Scholar
Zhang Z, Zhang X, Tan T. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresour Technol. 2014;157:149–53.
Article
CAS
PubMed
Google Scholar
Mast B, Zöhrens N, Schmidl F, et al. Lipid production for microbial biodiesel by the oleagenious yeast Rhodotorula glutinis using hydrolysates of wheat straw and miscanthus as carbon sources. Waste Biomass Valori. 2014;5(6):955–62.
Article
CAS
Google Scholar
Kot AM, Błażejak S, Kurcz A, et al. Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electron J Biotechnol. 2017;27:25–31.
Article
CAS
Google Scholar
Latha BV, Jeevaratnam K, Murali HS, Manja KS. Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. Indian J Biotechnol. 2014;4(3):353–7.
Google Scholar
Li C, Zhang N, Li B, et al. Increased torulene accumulation in red yeast Sporidiobolus pararoseus NGR as stress response to high salt conditions. Food Chem. 2017;237:1041–7.
Article
CAS
PubMed
Google Scholar
Sakaki H, Nochide H, Komemushi S, Miki W. Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis no. 21. J Biosci Bioeng. 2002;93(3):338–40.
Article
CAS
PubMed
Google Scholar
Galano A, Francisco-Marquez M. Reactions of OOH radical with β-carotene, lycopene, and torulene: hydrogen atom transfer and adduct formation mechanisms. J Phys Chem B. 2009;113(32):11338–45.
Article
CAS
PubMed
Google Scholar
Du C, Guo Y, Cheng Y, Han M, Zhang W, Qian H. Torulene and torularhodin, protects human prostate stromal cells from hydrogen peroxide-induced oxidative stress damage through the regulation of Bcl-2/Bax mediated apoptosis. Free Radic Res. 2017;51(2):113–23.
Article
CAS
PubMed
Google Scholar
Du C, Li Y, Guo Y, Han M, Zhang W, Qian H. The suppression of torulene and torularhodin treatment on the growth of PC-3 xenograft prostate tumors. Biochem Bioph Res Co. 2016;469(4):1146–52.
Article
CAS
Google Scholar
Du C, Li Y, Guo Y, Han M, Zhang W, Qian H. Torularhodin, isolated from Sporidiobolus pararoseus, inhibits human prostate cancer LNCaP and PC-3 cell growth through Bcl-2/Bax mediated apoptosis and AR down-regulation†. RSC Adv. 2015;5:106387–95.
Article
CAS
Google Scholar
Keceli TM, Erginkaya Z, Turkkan E, Kaya U. Antioxidant and antibacterial Eeffects of carotenoids extracted from Rhodotorula glutinis strains. Asian J Chem. 2013;25(1):42–6.
Article
CAS
Google Scholar
Ungureanua C, Dumitriua C, Popescua S, et al. Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification. Bioelectrochemistry. 2016;107:14–24.
Article
CAS
Google Scholar
Li J, Liu C, Guo Y, et al. Determination of the effects of torularhodin against alcoholic liver diseases by transcriptome analysis. Free Radical Bio Med. 2019;143:47–54.
Article
CAS
Google Scholar
Kot AM, Błażejak S, Gientka I, Kieliszek M, Bryś J. Torulene and torularhodin: "new" fungal carotenoids for industry? Microb Cell Factories. 2018;17(1):49.
Article
CAS
Google Scholar
Zoz L, Carvalho JC, Soccol VT, Casagrande TC, Cardoso L. Torularhodin and torulene: bioproduction, properties and prospective applications in food and cosmetics - a review. Braz Arch Biol Techn. 2015;58(2):278–88.
Article
CAS
Google Scholar
Latha BV, Jeevaratanm K. Thirteen-week oral toxicity study of carotenoid pigment from Rhodotorula glutinis DFR-PDY in rats. Indian J Exp Biol. 2012;50(9):645–51.
CAS
PubMed
Google Scholar
Barron CC, Sponagle BJD, Arivalagan P, D Cunha GB. Optimization of oligomeric enzyme activity in ionic liquids using Rhodotorula glutinis yeast phenylalanine ammonia lyase. Enzyme Microb Tech 2017; 96:151–156.
Zhu L, Cui W, Fang Y, Liu Y, Gao X, Zhou Z. Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis. Biotechnol Lett. 2013;35(5):751–6.
Article
CAS
PubMed
Google Scholar
Zhang H, Wang L, Ma L, et al. Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biol Control. 2009;48(1):79–83.
Article
Google Scholar
Li B, Peng H, Tian S. Attachment capability of antagonistic yeast Rhodotorula glutinis to Botrytis cinerea contributes to biocontrol efficacy. Front Microbiol. 2016;7:601.
PubMed
PubMed Central
Google Scholar
Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry—challenges and the way forward. Front Nutr. 2019;6:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Braunwald T, Schwemmlein L, Graeff-Hönninger S, et al. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biot. 2013;97(14):6581–8.
Article
CAS
Google Scholar
Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem. 2011;46(1):210–8.
Article
CAS
Google Scholar
Kot AM, Błażejak S, Kurcz A, Gientka I, Kieliszek M. Rhodotorula glutinis—potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biot. 2016;100(14):6103–17.
Article
CAS
Google Scholar
Paul D, Magbanua Z, II MA et al. Genome sequence of the oleaginous yeast Rhodotorula glutinis ATCC 204091. Genome Announc 2014; 2(1):e14–e46.
Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV. Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng. 2016;113(5):1056–66.
Article
CAS
PubMed
Google Scholar
Sossah F, Liu Z, Yang C, et al. Genome sequencing of Cladobotryum protrusum provides insights into the evolution and pathogenic mechanisms of the cobweb disease pathogen on cultivated mushroom. Genes-Basel. 2019;10(2):124.
Article
CAS
PubMed Central
Google Scholar
Mi S, Shang K, Li X, Zhang C, Liu J, Huang D. Characterization and discrimination of selected China's domestic pork using an LC-MS-based lipidomics approach. Food Control. 2019;100:305–14.
Article
CAS
Google Scholar
Sen D, Paul K, Saha C, et al. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1—a comparative genomics viewpoint. DNA Res. 2019;26(2):131–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urbina H, Aime MC. A closer look at Sporidiobolales: ubiquitous microbial community members of plant and food biospheres. Mycologia. 2018;110(1):79–92.
Article
PubMed
Google Scholar
Feng X, Jia Y, Zhu R, Chen K, Chen Y. Characterization and analysis of the transcriptome in Gymnocypris selincuoensis on the Qinghai-Tibetan plateau using single-molecule long-read sequencing and RNA-seq. DNA Res. 2019;26(4):353–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Liu M, Zhang X, Tan T. Microbial lipid production and organic matters removal from cellulosic ethanol wastewater through coupling oleaginous yeasts and activated sludge biological method. Bioresour Technol. 2018;267:395–400.
Article
CAS
PubMed
Google Scholar
Wang Y, Ho S, Yen H, et al. Current advances on fermentative biobutanol production using third generation feedstock. Biotechnol Adv. 2017;35(8):1049–59.
Article
CAS
PubMed
Google Scholar
Liang M, Jiang J. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52(4):395–408.
Article
CAS
PubMed
Google Scholar
Zhu Z, Zhang S, Liu H, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun. 2012;3(1):1112.
Article
PubMed
CAS
Google Scholar
Pohanka M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules. 2019;24(3):616.
Article
PubMed Central
CAS
Google Scholar
Maharana AK, Singh SM. A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23. J Basic Microb. 2018;58(4):331–42.
Article
CAS
Google Scholar
Hausmann A, Sandmann G. A single five-step desaturase is involved in the carotenoid biosynthesis pathway to β-carotene and torulene in Neurospora crassa. Fungal Genet Biol. 2000;30(2):147–53.
Article
CAS
PubMed
Google Scholar
Herz S, Weber RWS, Anke H, Mucci A, Davoli P. Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, fungi). Phytochemistry. 2007;68(20):2503–11.
Article
CAS
PubMed
Google Scholar
Li C, Zhang N, Song J, et al. A single desaturase gene from red yeast Sporidiobolus pararoseus is responsible for both four- and five-step dehydrogenation of phytoene. Gene. 2016;590(1):169–76.
Article
CAS
PubMed
Google Scholar
Li C, Li B, Zhang N, Wang Q, Wang W, Zou H. Comparative transcriptome analysis revealed the improved β-carotene production in Sporidiobolus pararoseus yellow mutant MuY9. J Gen Appl Microbiol. 2019;65(3):121–8.
Article
CAS
PubMed
Google Scholar
Wang G, Wu L, Zhang H, et al. Regulation of the phenylpropanoid pathway: a mechanism of selenium tolerance in peanut (Arachis hypogaea L.) seedlings. J Agr Food Chem. 2016;64(18):3626–35.
Article
CAS
Google Scholar
Li J, Tian C, Xia Y, Mutanda I, Wang K, Wang Y. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metab Eng. 2019;52:124–33.
Article
CAS
PubMed
Google Scholar
Kawatra A, Dhankhar R, Mohanty A, Gulati P. Biomedical applications of microbial phenylalanine ammonia lyase: current status and future prospects. Biochimie. 2020;177:142–52.
Article
CAS
PubMed
Google Scholar
Cai Y, Cai X, Wang Q, et al. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnol J. 2019;18(3):814–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao C, Chen Y, Xie S, et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat Methods. 2017;14(11):1072–4.
Article
CAS
PubMed
Google Scholar
Myers EW. A whole-genome assembly of drosophila. Science. 2000;287(5461):2196–204.
Article
CAS
PubMed
Google Scholar
Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.
Article
PubMed
PubMed Central
CAS
Google Scholar
Firrincieli A, Otillar R, Salamov A, et al. Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front Microbiol. 2015;6:978.
Article
PubMed
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
Article
PubMed
CAS
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Tang H, DeBarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong Q, Zhong L, Du J, et al. Ribosome profiling reveals the effects of nitrogen application translational regulation of yield recovery after abrupt drought-flood alternation in rice. Plant Physiol Bioch. 2020;155:42–58.
Article
CAS
Google Scholar
Yang B, Wang N, Wang S, et al. Network-pharmacology-based identification of caveolin-1 as a key target of Oldenlandia diffusa to suppress breast cancer metastasis. Biomed Pharmacother. 2019;112:108607.
Article
CAS
PubMed
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang T, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 2008;18(12):1979–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics. 2016;32(5):767–9.
Article
CAS
PubMed
Google Scholar
Tarailo Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009;25(1):4–10.
Article
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Luo H, Li Y, et al. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genomics. 2011;12:533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurtz S, Phillippy A, Delcher AL, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5(2):R12.
Article
PubMed
PubMed Central
Google Scholar
Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar
Li C, Zhao D, Li B, Zhang N, Yan J, Zou H. Whole genome sequencing and comparative genomic analysis of oleaginous red yeast Sporobolomyces pararoseus NGR identifies candidate genes for biotechnological potential and ballistospores-shooting. BMC Genomics. 2020;21(1):181.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics. 2006;4(4):259–63.
Article
CAS
PubMed
Google Scholar
Wang Y, Yang L, Zhou K, Zhang Y, Song Z, He S. Evidence for adaptation to the Tibetan plateau inferred from Tibetan loach transcriptomes. Genome Biol Evol. 2015;7(11):2970–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Ma Z, Shen X, et al. Serum lipidomics profiling to identify biomarkers for non-small cell lung cancer. Biomed Res Int. 2018;2018:1–16.
Google Scholar
Chambers MC, Maclean B, Burke R, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779–87.
Article
CAS
PubMed
Google Scholar
Wen B, Mei Z, Zeng C, Liu S. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics. 2017;18(1):183.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem. 2011;84(1):283–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lam SM, Tian H, Shui G. Lipidomics, en route to accurate quantitation. BBA- Mol Cell Bio Lip. 2017;1862(8):752–61.
Article
CAS
Google Scholar