Rozema J, Flowers T. Crops for a salinized world. Science. 2008;322(5907):1478–80.
Article
CAS
PubMed
Google Scholar
Munns R. Genes and salt tolerance: bringing them together. New Phytol. 2005;167(3):645–63.
Article
CAS
PubMed
Google Scholar
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25(2):239–50.
Article
CAS
PubMed
Google Scholar
Tang X, Mu X, Shao H, Wang H, Brestic M. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol. 2014;35(4):425–37.
Article
PubMed
CAS
Google Scholar
Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005;60(3):324–49.
Article
CAS
PubMed
Google Scholar
Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69(4):473–88.
Article
CAS
PubMed
Google Scholar
Lai Y, Zhang D, Wang J, Wang J, Ren P, Yao L, Si E, Kong Y, Wang H. Integrative Transcriptomic and proteomic analyses of molecular mechanism responding to salt stress during seed germination in Hulless barley. Int J Mol Sci. 2020;21(1):359.
Article
CAS
PubMed Central
Google Scholar
Zhang X, Yao Y, Li X, Zhang L, Fan S. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Sci Rep. 2020;10:4236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou C, Liu D, Wu P, Wang Y, Gai Z, Liu L, Yang F, Li C, Guo G. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Plant Mol Biol. 2020;102:645–57.
Article
CAS
PubMed
Google Scholar
Julkowska MM, Testerink C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 2015;20(9):586–94.
Article
CAS
PubMed
Google Scholar
Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development. Plant Cell Rep. 2013;32(7):959–70.
Article
CAS
PubMed
Google Scholar
Zhu J-K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53(1):247–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2013;65(5):1229–40.
Article
PubMed
CAS
Google Scholar
Brosché M, Overmyer K, Wrzaczek M, Kangasjärvi J, Kangasjärvi S: Stress signaling III: reactive oxygen species (ROS). In: Abiotic Stress Adaptation in Plants. Netherlands: Springer; 2009. p. 91–102.
Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17(7):1866–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics. 2014;15(1):760.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guozhong Z, Li W, Zhang F, Guo W. RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii, vol. 19; 2018.
Google Scholar
Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One. 2014;9(11):e112807.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leidi E. Genotypic variation of cotton in response to stress by NaCl or PEG. REUR Technical Series (FAO); 1994.
Google Scholar
Reinhardt D, Rost T. Primary and lateral root development of dark-and light-grown cotton seedlings under salinity stress. Bot Acta. 1995;108(5):457–65.
Article
Google Scholar
Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol. 1991;95(2):628–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z. Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics. 2011;98:47–55.
Article
CAS
PubMed
Google Scholar
Zhang B, Chen X, Lu X, Shu N, Wang X, Yang X, Wang S, Wang J, Guo L, Wang D, Ye W. Transcriptome analysis of Gossypium hirsutum L. reveals different mechanisms among NaCl, NaOH and Na2CO3 stress tolerance. Sci Rep. 2018;8(1):13527.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jin L-G, Liu J-Y. Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum). Plant Physiol Biochem. 2008;46(1):46–53.
Article
CAS
PubMed
Google Scholar
Roy SJ, Tucker EJ, Tester M. Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol. 2011;14(3):232–9.
Article
CAS
PubMed
Google Scholar
Zhao G, Song Y, Wang Q, Yao D, Li D, Qin W, Ge X, Yang Z, Xu W, Su Z, Zhang X, Li F, Wu J. Gossypium hirsutum Salt Tolerance Is Enhanced by Overexpression of G. arboreum JAZ1. Front Bioeng Biotechnol. 2020;8:157.
Article
PubMed
PubMed Central
Google Scholar
Zhu G, Gao W, Song X, Sun F, Hou S, Liu N, Huang Y, Zhang D, Ni Z, Chen Q, Guo W. Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC Plant Biol. 2020;20:23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu P, Liu Z, Fan X, Gao J, Zhang X, Zhang X, Shen X. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress. Gene. 2013;525(1):26–34.
Article
CAS
PubMed
Google Scholar
Ueda A, Kathiresan A, Bennett J, Takabe T. Comparative transcriptome analyses of barley and rice under salt stress. Theor Appl Genet. 2006;112(7):1286–94.
Article
CAS
PubMed
Google Scholar
Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell. 2001;13(4):889–905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, et al. GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One. 2017;12(7):e0181450.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sheoran S, Thakur V, Narwal S, Turan R, Mamrutha HM, Singh V, Tiwari V, Sharma I. Differential activity and expression profile of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought. Appl Biochem Biotechnol. 2015;177(6):1282–98.
Article
CAS
PubMed
Google Scholar
Islam S, Zeisel A, Joost S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2013;11(2):163–6.
Article
PubMed
CAS
Google Scholar
Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. 2015;75(2):391–404.
Article
CAS
Google Scholar
Yang Y, Guo Y. Unraveling salt stress signaling in plants. J Integr Plant Biol. 2018;60(9):796–804.
Article
CAS
PubMed
Google Scholar
Zhu J-K. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
He L, Yang X, Wang L, Zhu L, Zhou T, Deng J, Zhang X. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun. 2013;435(2):209–15.
Article
CAS
PubMed
Google Scholar
Sanyal SK, Pandey A, Pandey GK. The CBL–CIPK signaling module in plants: a mechanistic perspective. Physiol Plant. 2015;155(2):89–108.
Article
CAS
PubMed
Google Scholar
Zhao S, Zhang M-L, Ma T-L, Wang Y. Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell. 2016;28(12):3005–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad I, Mian A, Maathuis FJ. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. J Exp Bot. 2016;67(9):2689–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G. Rice potassium transporter O s HAK 1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ. 2015;38(12):2747–65.
Article
CAS
PubMed
Google Scholar
Han M, Wu W, Wu W-H, Wang Y. Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Mol Plant. 2016;9(3):437–46.
Article
CAS
PubMed
Google Scholar
Vanlerberghe GC, Cvetkovska M, Wang J. Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? Physiol Plant. 2009;137(4):392–406.
Article
CAS
PubMed
Google Scholar
He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol. 2005;46(11):1848–54.
Article
CAS
PubMed
Google Scholar
Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci. 2016;7:4.
Article
PubMed
PubMed Central
Google Scholar
Campos JF, Cara B, Pérez-Martín F, Pineda B, Egea I, Flores FB, Fernandez-Garcia N, Capel J, Moreno V, Angosto T. The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation. Plant Biotechnol J. 2016;14(6):1345–56.
Article
CAS
PubMed
Google Scholar
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81.
Article
CAS
PubMed
Google Scholar
Tenhaken R. Cell wall remodeling under abiotic stress. Front Plant Sci. 2015;5:771.
Article
PubMed
PubMed Central
Google Scholar
Endler A, Kesten C, Schneider R, Zhang Y, Ivakov A, Froehlich A, Funke N, Persson S. A mechanism for sustained cellulose synthesis during salt stress. Cell. 2015;162(6):1353–64.
Article
CAS
PubMed
Google Scholar
Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol. 2010;52(4):360–76.
Article
CAS
PubMed
Google Scholar
Kao CH. (66 (2): 87–93) Mechanisms of Salt Tolerance in Rice Plants: Cell Wall-Related Genes and Expansins. J Taiwan Agric Res. 2017;2:87–93.
Google Scholar
Le Gall H, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants. 2015;4(1):112–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu M-C, Maman J, Steinhorst L, Schmitz-Thom I. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol. 2018;28(5):666–75 e665.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdelraheem A, Esmaeili N, O’Connell M, Zhang J. Progress and perspective on drought and salt stress tolerance in cotton. Ind Crop Prod. 2019;130:118–29.
Article
CAS
Google Scholar
Wang M, Wang P, Liang F, Ye Z, Li J, Shen C, Pei L, Wang F, Hu J, Tu L. A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation. New Phytol. 2018;217(1):163–78.
Article
PubMed
CAS
Google Scholar
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a Core signaling network. Annu Rev Plant Biol. 2010;61(1):651–79.
Article
CAS
PubMed
Google Scholar
Jiang C, Belfield EJ, Cao Y, Smith JAC, Harberd NP. An Arabidopsis soil-salinity–tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell. 2013;25(9):3535–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C-H, Wang G, Zhao J-L, Zhang L-Q, Ai L-F, Han Y-F, Sun D-Y, Zhang S-W, Sun Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in Rice. Plant Cell. 2014;26(6):2538–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen D, Ma X, Li C, Zhang W, Xia G, Wang M. A wheat aminocyclopropane-1-carboxylate oxidase gene, TaACO1, negatively regulates salinity stress in Arabidopsis thaliana. Plant Cell Rep. 2014;33(11):1815–27.
Article
CAS
PubMed
Google Scholar
Dong H, Zhen Z, Peng J, Chang L, Gong Q, Wang NN. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J Exp Bot. 2011;62(14):4875–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hassanein RA, EL-Kazzaz AA, Hashem HA, Gabr AM, Ali UI, Hanafy MS, Ebrahim HS. Transformation with the sodium/proton antiporter'AtNHX1'enhances salt tolerance in faba bean ('Vicia faba'L.). Plant Omics. 2019;12(1):48.
Google Scholar
Palavalasa H, Narasu L, Varshney R, Kavi Kishor P. Genome wide analysis of sodium transporters and expression of Na+/H+-antiporter-like protein (SbNHXLP) gene in tomato for salt tolerance; 2017.
Google Scholar
Pehlivan N, Sun L, Jarrett P, Yang X, Mishra N, Chen L, Kadioglu A, Shen G, Zhang H. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant Cell Physiol. 2016;57(5):1069–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X. The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant. 2013;6(2):275–86.
Article
CAS
PubMed
Google Scholar
Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ. 2015;38(12):2766–79.
Article
CAS
PubMed
Google Scholar
Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2017;217(2):523–39.
Article
PubMed
CAS
Google Scholar
Wang B, Zhai H, He S, Zhang H, Ren Z, Zhang D, Liu Q. A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic. 2016;201:153–66.
Article
CAS
Google Scholar
Wei Y, Xu Y, Lu P, Wang X, Li Z, Cai X, Zhou Z, Wang Y, Zhang Z, Lin Z. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS One. 2017;12(5):e0178313.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoo M-J, Wendel JF. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet. 2014;10(1):e1004073.
Article
PubMed
PubMed Central
CAS
Google Scholar
Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856–67.
Article
CAS
PubMed
Google Scholar
Luo X, Wu J, Li Y, Nan Z, Guo X, Wang Y, Zhang A, Wang Z, Xia G, Tian Y. Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl Viologen and salt stresses. PLoS One. 2013;8(1):e54002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu R, Yamada M, Fujiyama H. Lipid peroxidation and antioxidative enzymes of two turfgrass species under salinity stress. Pedosphere. 2013;23(2):213–22.
Article
CAS
Google Scholar
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–10.
Article
CAS
PubMed
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30.
Article
CAS
PubMed
Google Scholar
Kurusu T, Kuchitsu K, Tada Y. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front Plant Sci. 2015;6:427.
Zhu D, Hou L, Xiao P, Guo Y, Deyholos MK, Liu X. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Sci. 2019;280:132–42.
Article
CAS
PubMed
Google Scholar
Song H, Wang P, Hou L, Zhao S, Zhao C, Xia H, Li P, Zhang Y, Bian X, Wang X. Global analysis of WRKY genes and their response to dehydration and salt stress in soybean. Front Plant Sci. 2016;7:9.
PubMed
PubMed Central
Google Scholar
Wang J, Cheng G, Wang C, He Z, Lan X, Zhang S, Lan H. The bHLH transcription factor CgbHLH001 is a potential interaction partner of CDPK in halophyte Chenopodium glaucum. Sci Rep. 2017;7(1):8441.
Wang F, Zhu H, Chen D, Li Z, Peng R, Yao Q. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Culture (PCTOC). 2016;125(2):387–98.
Article
CAS
Google Scholar
Babitha KC, Vemanna RS, Nataraja KN, Udayakumar M. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress. PLoS One. 2015;10(9):e0137098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai Y, Zhang L, Xia C, Fu S, Zhao G, Jia J, Kong X. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants. Biochem Biophys Res Commun. 2016;473(4):1321–7.
Article
CAS
PubMed
Google Scholar
Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder J. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014;19:371–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang X, Liu Y, Wu X, Cheng F, Hu J, Meng X, Ma Z. Response of Antioxidant Enzymes and Digestive Enzymes to Temperature Stress in Lates calcarifer Larvae. Israeli J Aquaculture Bamidgeh. 2018;IJA_70.2018.1537:12.
Google Scholar
Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51(4):739.
Article
CAS
PubMed
Google Scholar
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21(9):1859–75.
Article
CAS
PubMed
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
Google Scholar
Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7:986–95.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36:D480–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dossa K, Li D, Wang L, Zheng X, Liu A, Yu J, Wei X, Zhou R, Fonceka D, Diouf D, Liao B, Cissé N, Zhang X. Transcriptomic, biochemical and physio-anatomical investigations shed more light on responses to drought stress in two contrasting sesame genotypes. Sci Rep. 2017;7:8755.
Article
PubMed
PubMed Central
CAS
Google Scholar