Gloss BS, Dinger ME. The specificity of long noncoding RNA expression. Biochim Biophys Acta Gene Regul Mech. 2016; 1859(1):16–22. http://www.sciencedirect.com/science/article/pii/S1874939915001741.
Article
CAS
Google Scholar
Meseure D, Drak Alsibai K, Nicolas A, Bieche I, Morillon A. Long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. BioMed Res Int. 2015; 2015:e320214. https://www.hindawi.com/journals/bmri/2015/320214/.
Article
CAS
Google Scholar
Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, Lavabre-Bertrand T, Commes T, Lemaître J-M, Boureux A, Vos JD. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update. 2016; 23:19–40. https://doi.org/10.1093/humupd/dmw035.
Article
PubMed
CAS
Google Scholar
Li L, Chang HY. Physiological roles of long noncoding RNAs: Insights from knockout mice. Trends Cell Biol. 2014; 24(10):594–602. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177945/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhamija S, Diederichs S. From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis. Int J Cancer. 2016; 139(2):269–80. https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.30039.
Article
CAS
PubMed
Google Scholar
Li X, Li N. LncRNAs on guard. Int Immunopharmacol. 2018; 65:60–3. http://www.sciencedirect.com/science/article/pii/S1567576918307161.
Article
CAS
PubMed
Google Scholar
Morillon A, Gautheret D. Genome Biol. 2019; 20:112. https://doi.org/10.1186/s13059-019-1710-7.
Article
PubMed
PubMed Central
Google Scholar
Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet. 2018; 19(9):535–48. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451964/.
Article
CAS
PubMed
PubMed Central
Google Scholar
James AR, Schroeder MP, Neumann M, Bastian L, Eckert C, Gökbuget N, Tanchez JO, Schlee C, Isaakidis K, Schwartz S, Burmeister T, von Stackelberg A, Rieger MA, Göllner S, Horstman M, Schrappe M, Kirschner-Schwabe R, Brüggemann M, Müller-Tidow C, Serve H, Akalin A, Baldus CD. Long non-coding RNAs defining major subtypes of B cell precursor acute lymphoblastic leukemia. J Hematol Oncol. 2019; 12:8. https://doi.org/10.1186/s13045-018-0692-3.
Article
PubMed
PubMed Central
Google Scholar
Liu X, Ma Y, Yin K, Li W, Chen W, Zhang Y, Zhu C, Li T, Han B, Liu X, Wang S, Zhou Z. Long non-coding and coding RNA profiling using strand-specific RNA-seq in human hypertrophic cardiomyopathy. Sci Data. 2019; 6(1):1–7. https://www.nature.com/articles/s41597-019-0094-6.
Article
Google Scholar
Lv F-J, Tuan RS, Cheung KMC, Leung VYL. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014; 32(6):1408–19. http://onlinelibrary.wiley.com.gate2.inist.fr/doi/10.1002/stem.1681/abstract.
Article
CAS
PubMed
Google Scholar
Soundararajan M, Kannan S. Fibroblasts and mesenchymal stem cells: Two sides of the same coin?J Cell Physiol. 2018; 233(12):9099–109. https://doi.org/10.1002/jcp.26860.
Article
CAS
PubMed
Google Scholar
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4):315–7. https://doi.org/10.1080/14653240600855905.
Article
CAS
PubMed
Google Scholar
Fitzsimmons REB, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int. 2018; 2018:e8031718. https://www.hindawi.com/journals/sci/2018/8031718/.
Article
CAS
Google Scholar
Olsen TR, Ng KS, Lock LT, Ahsan T, Rowley JA. Peak MSC–are we there yet?Front Med. 2018; 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021509/.
Tye CE, Gordon JAR, Martin-Buley LA, Stein JL, Lian JB, Stein GS. Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation?J Cell Physiol. 2015; 230(3):526–34. https://doi.org/10.1002/jcp.24834.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalwa M, Hänzelmann S, Otto S, Kuo C-C, Franzen J, Joussen S, Fernandez-Rebollo E, Rath B, Koch C, Hofmann A, Lee S-H, Teschendorff AE, Denecke B, Lin Q, Widschwendter M, Weinhold E, Costa IG, Wagner W. The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res. 2016; 44(22):10631–43. https://doi.org/10.1093/nar/gkw802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song WQ, Gu WQ, Qian YB, Ma X, Mao YJ, Liu WJ. Identification of long non-coding RNA involved in osteogenic differentiation from mesenchymal stem cells using RNA-Seq data. Genet Mol Res. 2015; 14(4):18268–79. http://www.funpecrp.com.br/gmr/year2015/vol14-4/pdf/gmr6893.pdf.
Article
CAS
PubMed
Google Scholar
Niazi F, Valadkhan S. Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3’ UTRs. RNA. 2012; 18(4):825–43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312569/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Xu T, He W, Shen X, Zhao Q, Bai J, You M. Genome-wide identification and characterization of putative lncRNAs in the diamondback moth, Plutella xylostella (L.)Genomics. 2018; 110(1):35–42. http://www.sciencedirect.com/science/article/pii/S0888754317300708.
Article
CAS
PubMed
Google Scholar
Cagirici HB, Alptekin B, Budak H. RNA sequencing and co-expressed long non-coding RNA in modern and wild wheats. Sci Rep. 2017; 7:10670. https://www.nature.com/articles/s41598-017-11170-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salari R, Aksay C, Karakoc E, Unrau PJ, Hajirasouliha I, Sahinalp SC. smyRNA: a novel Ab initio ncRNA gene finder. PLoS ONE. 2009; 4(5):5433. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673033/.
Article
CAS
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5):525–7. http://www.nature.com.gate2.inist.fr/nbt/journal/v34/n5/full/nbt.3519.html.
Article
CAS
PubMed
Google Scholar
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017; 14(7):687–90. http://www.nature.com/articles/nmeth.4324.
Article
CAS
PubMed
Google Scholar
Gu Q, Tian H, Zhang K, Chen D, Chen D, Wang X, Zhao J. Wnt5a/FZD4 mediates the mechanical stretch-induced osteogenic differentiation of bone mesenchymal stem cells. Cell Physiol Biochem. 2018; 48(1):215–26. https://www.karger.com/Article/FullText/491721.
Article
CAS
PubMed
Google Scholar
Diederichs S, Tonnier V, März M, Dreher SI, Geisbüsch A, Richter W. Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy. Cell Mol Life Sci. 2019; 76(19):3875–89.
Article
CAS
PubMed
Google Scholar
Bermeo S, Vidal C, Zhou H, Duque G. Lamin A/C acts as an essential factor in mesenchymal stem cell differentiation through the regulation of the dynamics of the Wnt/ β-catenin pathway. J Cell Biochem. 2015; 116(10):2344–53. http://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.25185.
Article
CAS
PubMed
Google Scholar
Chung K-M, Hsu S-C, Chu Y-R, Lin M-Y, Jiaang W-T, Chen R-H, Chen X. Fibroblast activation protein (FAP) is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation. PLoS ONE. 2014; 9(2):88772. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923824/.
Article
CAS
Google Scholar
Kursa MB, Jankowski A, Rudnicki WR. Boruta?a system for feature selection. Fundam Inf. 2010; 101(4):271–85. http://dl.acm.org/citation.cfm?id=1883472.1883474.
Google Scholar
Rufflé F, Audoux J, Boureux A, Beaumeunier S, Gaillard J-B, Bou Samra E, Megarbane A, Cassinat B, Chomienne C, Alves R, Riquier S, Gilbert N, Lemaitre J-M, Bacq-Daian D, Bougé AL, Philippe N, Commes T. New chimeric RNAs in acute myeloid leukemia. F1000Research. 2017; 6:1302. https://f1000research.com/articles/6-1302/v2.
Article
Google Scholar
Wucher V, Legeai F, Hédan B, Rizk G, Lagoutte L, Leeb T, Jagannathan V, Cadieu E, David A, Lohi H, Cirera S, Fredholm M, Botherel N, Leegwater PAJ, Le Béguec C, Fieten H, Johnson J, Alföldi J, André C, Lindblad-Toh K, Hitte C, Derrien T. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 2017; 45(8):e57. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5416892/.
CAS
PubMed
PubMed Central
Google Scholar
Ding J, Li X, Hu H. TarPmiR: a new approach for microRNA target site prediction. Bioinformatics. 2016; 32(18):2768–75. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018371/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C, Yang L, Zhou M, Xie H, Zhang C, Wang MD, Zhu H. LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning. Bioinformatics. 2018; 34(22):3825–34. https://academic-oup-com.gate2.inist.fr/bioinformatics/article/34/22/3825/5021677.
Article
CAS
PubMed
Google Scholar
van der Krieken SE, Popeijus HE, Mensink RP, Plat J. Link between ER-stress, PPAR-alpha activation, and BET inhibition in relation to apolipoprotein A-I transcription in HepG2 cells. J Cell Biochem. 2017; 118(8):2161–7. https://www.onlinelibrary.wiley.com/doi/abs/10.1002/jcb.25858.
Article
CAS
PubMed
Google Scholar
Delbridge ARD, Kueh AJ, Ke F, Zamudio NM, El-Saafin F, Jansz N, Wang G-Y, Iminitoff M, Beck T, Haupt S, Hu Y, May RE, Whitehead L, Tai L, Chiang W, Herold MJ, Haupt Y, Smyth GK, Thomas T, Blewitt ME, Strasser A, Voss AK. Loss of p53 causes stochastic aberrant X-chromosome inactivation and female-specific neural tube defects. Cell Rep. 2019; 27(2):442–54.e5. http://www.sciencedirect.com/science/article/pii/S221112471930364X.
Article
CAS
PubMed
Google Scholar
Siebring-van Olst E, Blijlevens M, de Menezes RX, van der Meulen-Muileman IH, Smit EF, van Beusechem VW. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment. Mol Oncol. 2017; 11(5):534–51. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527466/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007; 282(34):24731–42. http://www.jbc.org/content/282/34/24731.
Article
CAS
PubMed
Google Scholar
Uroda T, Anastasakou E, Rossi A, Teulon J-M, Pellequer J-L, Annibale P, Pessey O, Inga A, Chillón I, Marcia M. Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway. Mol Cell. 2019; 75(5):982–95.e9. http://www.sciencedirect.com/science/article/pii/S1097276519305635.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haack TB, Rolinski B, Haberberger B, Zimmermann F, Schum J, Strecker V, Graf E, Athing U, Hoppen T, Wittig I, Sperl W, Freisinger P, Mayr JA, Strom TM, Meitinger T, Prokisch H. Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings. J Inherit Metab Dis. 2013; 36(1):55–62. http://onlinelibrary.wiley.com/doi/abs/10.1007/s10545-012-9489-7.
Article
CAS
PubMed
Google Scholar
Yu Q, Tai Y-Y, Tang Y, Zhao J, Negi V, Culley MK, Pilli J, Sun W, Brugger K, Mayr J, Saggar R, Wallace WD, Ross DJ, Waxman AB, Wendell SG, Mullett SJ, Sembrat J, Rojas M, Khan OF, Dahlman JE, Sugahara M, Kagiyama N, Satoh T, Zhang M, Feng N, Gorcsan J, Vargas SO, Haley KJ, Kumar R, Graham BB, Langer R, Anderson DG, Wang B, Shiva S, Bertero T, Chan SY. BOLA (BolA Family Member 3) deficiency controls endothelial metabolism and glycine homeostasis in pulmonary hypertension. Circulation. 2019; 139(19):2238–55. http://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.118.035889.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Li K. AB042. P013. LncRNAPTCHD3P1 enhances chemosensitivity of gemcitabine in pancreatic cancer and inhibits cancer cell proliferation and metastasis via inhibiting Warburg effect. Ann Pancreat Cancer. 2018; 1(4). https://apc.amegroups.com/article/view/4220.
Qin L, Wang M, Zuo J, Feng X, Liang X, Wu Z, Ye H. Cytosolic BolA plays a repressive role in the tolerance against excess iron and MV-induced oxidative stress in plants. PLoS ONE. 2015; 10(4). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415784/.
Kitajima S, Asahina H, Chen T, Guo S, Quiceno LG, Cavanaugh JD, Merlino AA, Tange S, Terai H, Kim JW, Wang X, Zhou S, Xu M, Wang S, Zhu Z, Thai TC, Takahashi C, Wang Y, Neve R, Stinson S, Tamayo P, Watanabe H, Kirschmeier PT, Wong K-K, Barbie DA. Overcoming resistance to dual innate immune and MEK inhibition downstream of KRAS. Cancer cell. 2018; 34(3):439–52.e6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422029/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raj N, Bam R. Reciprocal Crosstalk Between YAP1/Hippo Pathway and the p53 Family Proteins: Mechanisms and Outcomes in Cancer. Front Cell Dev Biol. 2019; 7:159. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695833/.
Article
PubMed
PubMed Central
Google Scholar
He J, Tu C, Liu Y. Role of lncRNAs in aging and age-related diseases. Aging Med. 2018; 1(2):158–75. http://onlinelibrary.wiley.com/doi/abs/10.1002/agm2.12030.
Article
Google Scholar
Schuff M, Rössner A, Wacker SA, Donow C, Gessert S, Knöchel W. FoxN3 is required for craniofacial and eye development of Xenopus laevis. Dev Dyn. 2007; 236(1):226–39. http://anatomypubs.onlinelibrary.wiley.com/doi/abs/10.1002/dvdy.21007.
Article
CAS
PubMed
Google Scholar
Samaan G, Yugo D, Rajagopalan S, Wall J, Donnell R, Goldowitz D, Gopalakrishnan R, Venkatachalam S. FoxN3 is essential for craniofacial development in mice and a putative candidate involved in human congenital craniofacial defects. Biochem Biophys Res Commun. 2010; 400(1):60–5. http://www.sciencedirect.com/science/article/pii/S0006291X10014762.
Article
CAS
PubMed
Google Scholar
Brum AM, van de Peppel J, van der Leije CS, Schreuders-Koedam M, Eijken M, van der Eerden BCJ, van Leeuwen JPTM. Connectivity Map-based discovery of parbendazole reveals targetable human osteogenic pathway. Proc Natl Acad Sci U S A. 2015; 112(41):12711–6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4611615/.
Article
CAS
PubMed
PubMed Central
Google Scholar
del Real A, Pérez-Campo FM, Fernández AF, Sañudo C, Ibarbia CG, Pérez-Núñez MI, Criekinge WV, Braspenning M, Alonso MA, Fraga MF, Riancho JA. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics. 2016; 12(2):113–22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330439/.
Article
PubMed
PubMed Central
Google Scholar
Bai J, Yao B, Wang L, Sun L, Chen T, Liu R, Yin G, Xu Q, Yang W. lncRNA A1BG-AS1 suppresses proliferation and invasion of hepatocellular carcinoma cells by targeting miR-216a-5p. J Cell Biochem. 2019; 120(6):10310–22. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.28315.
Article
CAS
PubMed
Google Scholar
Li N, Lee WY-W, Lin S-E, Ni M, Zhang T, Huang X-R, Lan H-Y, Li G. Partial loss of Smad7 function impairs bone remodeling, osteogenesis and enhances osteoclastogenesis in mice. Bone. 2014; 67:46–55. http://www.sciencedirect.com/science/article/pii/S8756328214002427.
Article
CAS
PubMed
Google Scholar
Vishal M, Vimalraj S, Ajeetha R, Gokulnath M, Keerthana R, He Z, Partridge NC, Selvamurugan N. MicroRNA-590-5p stabilizes Runx2 by targeting Smad7 during osteoblast differentiation. J Cell Physiol. 2017; 232(2):371–80. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.25434.
Article
CAS
PubMed
Google Scholar
Nowak WN, Taha H, Kachamakova-Trojanowska N, Stȩpniewski J, Markiewicz JA, Kusienicka A, Szade K, Szade A, Bukowska-Strakova K, Hajduk K, Klóska D, Kopacz A, Grochot-Przȩczek A, Barthenheier K, Cauvin C, Dulak J, Józkowicz A. Murine bone marrow mesenchymal stromal cells respond efficiently to oxidative stress despite the low level of heme oxygenases 1 and 2. Antioxid Redox Signal. 2017; 29(2):111–27. https://www.liebertpub.com/doi/full/10.1089/ars.2017.7097.
Article
CAS
Google Scholar
Balogh E, Paragh G, Jeney V. Influence of iron on bone homeostasis. Pharmaceuticals. 2018; 11(4):107. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316285/.
Article
CAS
PubMed Central
Google Scholar
Puri N, Sodhi K, Haarstad M, Kim DH, Bohinc S, Foglio E, Favero G, Abraham NG. Heme induced oxidative stress attenuates sirtuin1 and enhances adipogenesis in mesenchymal stem cells and mouse pre-adipocytes. J Cell Biochem. 2012; 113(6):1926–35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360793/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo Y, Tao H, Jin L, Xiang W, Guo W. CDKN2B-AS1 exerts oncogenic role in osteosarcoma by promoting cell proliferation and epithelial to mesenchymal transition. Cancer Biother Radiopharm. 2019. http://www.liebertpub.com/doi/full/10.1089/cbr.2019.2885.
Congrains A, Kamide K, Ohishi M, Rakugi H. ANRIL: molecular mechanisms and implications in human health. Int J Mol Sci. 2013; 14(1):1278–92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565320/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Z, Ding H, He E, Chen J, Li M. Overexpression of long non-coding RNA MFI2 promotes cell proliferation and suppresses apoptosis in human osteosarcoma. Oncol Rep. 2016; 36(4):2033–40. http://www.spandidos.publications.com/10.3892/or.2016.5013/abstract.
Article
CAS
PubMed
Google Scholar
Li C, Tan F, Pei Q, Zhou Z, Zhou Y, Zhang L, Wang D, Pei H. Non-coding RNA MFI2-AS1 promotes colorectal cancer cell proliferation, migration and invasion through miR-574-5p/MYCBP axis. Cell Prolif. 2019; 52(4):12632. http://onlinelibrary.wiley.com/doi/abs/10.1111/cpr.12632.
Article
CAS
Google Scholar
Zhu C, Huang L, Xu F, Li P, Li P, Hu F. LncRNA PCAT6 promotes tumor progression in osteosarcoma via activation of TGF- β pathway by sponging miR-185-5p. Biochem Biophys Res Commun. 2020. http://www.sciencedirect.com/science/article/pii/S0006291X19320388.
Dong P, Xiong Y, Yue J, Hanley SJB, Kobayashi N, Todo Y, Watari H. Long non-coding RNA NEAT1: a novel target for diagnosis and therapy in human tumors. Front Genet. 2018; 9:471. https://www.frontiersin.org/articles/10.3389/fgene.2018.00471/full#h15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed ASI, Dong K, Liu J, Wen T, Yu L, Xu F, Kang X, Osman I, Hu G, Bunting KM, Crethers D, Gao H, Zhang W, Liu Y, Wen K, Agarwal G, Hirose T, Nakagawa S, Vazdarjanova A, Zhou J. Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci. 2018; 115(37):8660–7. https://www.pnas.org/content/115/37/E8660.
Article
CAS
Google Scholar
Taiana E, Favasuli V, Ronchetti D, Todoerti K, Pelizzoni F, Manzoni M, Barbieri M, Fabris S, Silvestris I, Cantafio MEG, Platonova N, Zuccalà V, Maltese L, Soncini D, Ruberti S, Cea M, Chiaramonte R, Amodio N, Tassone P, Agnelli L, Neri A. Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia. 2019:1–11. http://www.nature.com/articles/s41375-019-0542-5.
Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G, Lu X. Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal. 2013; 25(5):1086–95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675781/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding K, Liao Y, Gong D, Zhao X, Ji W. Effect of long non-coding RNA H19 on oxidative stress and chemotherapy resistance of CD133+ cancer stem cells via the MAPK/ERK signaling pathway in hepatocellular carcinoma. Biochem Biophys Res Commun. 2018; 502(2):194–201. http://www.sciencedirect.com/science/article/pii/S0006291X18312129.
Article
CAS
PubMed
Google Scholar
Yu J-L, Li C, Che L-H, Zhao Y-H, Guo Y-B. Downregulation of long noncoding RNA H19 rescues hippocampal neurons from apoptosis and oxidative stress by inhibiting IGF2 methylation in mice with streptozotocin-induced diabetes mellitus. J Cell Physiol. 2019; 234(7):10655–70. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.27746.
Article
CAS
PubMed
Google Scholar
Hazell GGJ, Peachey AMG, Teasdale JE, Sala-Newby GB, Angelini GD, Newby AC, White SJ. PI16 is a shear stress and inflammation-regulated inhibitor of MMP2. Sci Rep. 2016; 6:39553. https://www.nature.com/articles/srep39553.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puvvula PK. Int J Mol Sci. 2019; 20(11):2615. http://creativecommons.org/licenses/by/3.0/.
Article
CAS
PubMed Central
Google Scholar
Spanner M, Weber K, Lanske B, Ihbe A, Siggelkow H, Schütze H, Atkinson MJ. The iron-binding protein ferritin is expressed in cells of the osteoblastic lineage in vitro and in vivo. Bone. 1995; 17(2):161–5. http://www.sciencedirect.com/science/article/pii/S875632829500176X.
Article
CAS
PubMed
Google Scholar
Balogh E, Tolnai E, Nagy B, Nagy B, Balla G, Balla J, Jeney V. Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin. Biochim Biophys Acta Mol basis Dis. 2016; 1862(9):1640–9. http://www.sciencedirect.com/science/article/pii/S0925443916301454.
Article
CAS
Google Scholar
Zarjou A, Jeney V, Arosio P, Poli M, Antal-Szalmás P, Agarwal A, Balla G, Balla J. Ferritin prevents calcification and osteoblastic differentiation of vascular smooth muscle cells. J Am Soc Nephrol. 2009; 20(6):1254–63. https://jasn.asnjournals.org/content/20/6/1254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doi M, Nagano A, Nakamura Y. Genome-wide screening by cDNA microarray of genes associated with matrix mineralization by human mesenchymal stem cells in vitro. Biochem Biophys Res Commun. 2002; 290(1):381–90. http://www.sciencedirect.com/science/article/pii/S0006291X01961960.
Article
CAS
PubMed
Google Scholar
Liu Z, Zheng Z, Qi J, Wang J, Zhou Q, Hu F, Liang J, Li C, Zhang W, Zhang X. CD24 identifies nucleus pulposus progenitors/notochordal cells for disc regeneration. J Biol Eng. 2018; 12(1):35. https://doi.org/10.1186/s13036-018-0129-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai Y-H, Lin K-L, Huang Y-P, Hsu Y-C, Chen C-H, Chen Y, Sie M-H, Wang G-J, Lee M-J. Suppression of ornithine decarboxylase promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. FEBS Lett. 2015; 589(16):2058–65. https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/j.febslet.2015.06.023.
Article
CAS
PubMed
Google Scholar
Chang C-F, Hsu K-H, Shen C-N, Li C-L, Lu J. Enrichment and characterization of two subgroups of committed osteogenic cells in the mouse endosteal bone marrow with expression levels of CD24. J Bone Res. 2014; 2(2):1–9. https://www.longdom.org/abstract/enrichment-and-characterization-of-two-subgroups-of-committed-osteogenic-cells-in-the-mouse-endosteal-bone-marrow-with-e-10149. html.
Google Scholar
Park GC, Song JS, Park H-Y, Shin S-C, Jang JY, Lee J-C, Wang S-G, Lee B-J, Jung J-S. Role of fibroblast growth factor-5 on the proliferation of human tonsil-derived mesenchymal stem cells. Stem Cells Dev. 2016; 25(15):1149–60. https://www-liebertpub-com.proxy.insermbiblio.inist.fr/doi/10.1089/scd.2016.0061.
Article
CAS
PubMed
Google Scholar
Kornmann M, Ishiwata T, Beger HG, Korc M. Fibroblast growth factor-5 stimulates mitogenic signaling and is overexpressed in human pancreatic cancer: evidence for autocrine and paracrine actions. Oncogene. 1997; 15(12):1417–24. https://www-nature-com.proxy.insermbiblio.inist.fr/articles/1201307.
Article
CAS
PubMed
Google Scholar
Williamson EA, Wray JW, Bansal P, Hromas R. Overview for the histone codes for DNA repair. Prog Mol Biol Transl Sci. 2012; 110:207–27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039077/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Hu B, Ding Z, Dang Y, Wu J, Li D, Liu X, Xiao B, Zhang W, Ren R, Lei J, Hu H, Chen C, Chan P, Li D, Qu J, Tang F, Liu G-H. ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discov. 2018; 4:1–19. https://www.nature.com/articles/s41421-017-0003-0.
Google Scholar
Fu L, Hu Y, Song M, Liu Z, Zhang W, Yu F-X, Wu J, Wang S, Izpisua Belmonte JC, Chan P, Qu J, Tang F, Liu G-H. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019; 17(4):e3000201. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samsonraj RM, Dudakovic A, Manzar B, Sen B, Dietz AB, Cool SM, Rubin J, van Wijnen AJ. Osteogenic stimulation of human adipose-derived mesenchymal stem cells using a fungal metabolite that suppresses the polycomb group protein EZH2. Stem Cells Transl Med. 2017; 7(2):197–209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788881/.
Article
PubMed
PubMed Central
CAS
Google Scholar
Agrawal Singh S, Lerdrup M, Gomes A-LR, van de Werken HJ, Vilstrup Johansen J, Andersson R, Sandelin A, Helin K, Hansen K. PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells. Elife. 2019; 8:e40364. https://doi.org/10.7554/eLife.40364.
Article
PubMed
PubMed Central
Google Scholar
Dudakovic A, Gluscevic M, Paradise CR, Dudakovic H, Khani F, Thaler R, Ahmed FS, Li X, Dietz AB, Stein GS, Montecino MA, Deyle DR, Westendorf JJ, van Wijnen AJ. Profiling of human epigenetic regulators using a semi-automated real-time qPCR platform validated by next generation sequencing. Gene. 2017; 609:28–37. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337945/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camilleri ET, Gustafson MP, Dudakovic A, Riester SM, Garces CG, Paradise CR, Takai H, Karperien M, Cool S, Sampen H-JI, Larson AN, Qu W, Smith J, Dietz AB, van Wijnen AJ. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016; 7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982273/.
Knight C, James S, Kuntin D, Fox J, Newling K, Hollings S, Pennock R, Genever P. Epidermal growth factor can signal via β-catenin to control proliferation of mesenchymal stem cells independently of canonical Wnt signalling. Cell Signal. 2019; 53:256–68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293317/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang S, Cheng S-J, Ren L-C, Wang Q, Kang Y-J, Ding Y, Hou M, Yang X-X, Lin Y, Liang N, Gao G. An expanded landscape of human long noncoding RNA. Nucleic Acids Res. 2019; 47(15):7842–56. https://academic.oup.com/nar/article/47/15/7842/5539882.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang T-H, Huang H-D, Ong W-K, Fu Y-J, Lee OK, Chien S, Ho JH. The effects of actin cytoskeleton perturbation on keratin intermediate filament formation in mesenchymal stem/stromal cells. Biomaterials. 2014; 35(13):3934–44. http://www.sciencedirect.com/science/article/pii/S0142961214000301.
Article
CAS
PubMed
Google Scholar
Chang Y, Li H, Guo Z. Mesenchymal stem cell-like properties in fibroblasts. Cell Physiol Biochem. 2014; 34(3):703–14. https://doi.org/10.1159/000363035.
Article
CAS
PubMed
Google Scholar
Denu RA, Nemcek S, Bloom DD, Goodrich AD, Kim J, Mosher DF, Hematti P. Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol. 2016; 136(2):85–97. http://www.karger.com/Article/Abstract/445096.
Article
CAS
PubMed
Google Scholar
Ball SG, Shuttleworth AC, Kielty CM. Direct cell contact influences bone marrow mesenchymal stem cell fate. Int J Biochem Cell Biol. 2004; 36(4):714–27. http://www.sciencedirect.com/science/article/pii/S1357272503003558.
Article
CAS
PubMed
Google Scholar
Tamama K, Sen CK, Wells A. Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev. 2008; 17(5):897–908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2973839/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, D’Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, Swanson S, Guo L-W, Thomson JA, Slukvin II. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 2017; 19(9):1902–16. http://www.sciencedirect.com/science/article/pii/S2211124717306447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Xiang Q, Xu F, Huang J, Yu N, Zhang Q, Long X, Zhou Z. Single-cell RNA-seq of cultured human adipose-derived mesenchymal stem cells. Sci Data. 2019; 6:190031. https://www.nature.com/articles/sdata201931.
Article
PubMed
PubMed Central
Google Scholar
Peffers MJ, Collins J, Fang Y, Goljanek-Whysall K, Rushton M, Loughlin J, Proctor C, Clegg PD. Age-related changes in mesenchymal stem cells identified using a multi-omics approach. Eur Cells Mater. 2016; 31:136–59.
Article
CAS
Google Scholar
Philippe N, Salson M, Commes T, Rivals E. CRAC: an integrated approach to the analysis of RNA-seq reads. Genome Biol. 2013; 14:R30. doi:10.1186/gb-2013-14-3-r30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015; 33(3):290–5. http://www.nature.com.gate2.inist.fr/nbt/journal/v33/n3/full/nbt.3122.html.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26(6):841–2. https://academic.oup.com/bioinformatics/article/26/6/841/244688.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ilott NE, Ponting CP. Predicting long non-coding RNAs using RNA sequencing. Methods (San Diego, Calif.) 2013; 63(1):50–9. https://doi.org/10.1016/j.ymeth.2013.03.019.
Article
CAS
Google Scholar
Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 2016; 32(14):2103–10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937194/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive integration of single-cell data. Cell. 2019; 177(7):1888–902.e21. https://www.cell.com/cell/abstract/S0092-8674(19)30559-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018; 36(5):411–20. https://www.nature.com/articles/nbt.4096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007; 8(1):118–27. https://academic.oup.com/biostatistics/article/8/1/118/252073.
Article
PubMed
Google Scholar
Hahne F, Ivanek R. Visualizing genomic data using Gviz and bioconductor In: Mathé E, Davis S, editors. Statistical Genomics: Methods and Protocols. New York: Springer: 2016. p. 335–51. https://doi.org/10.1007/978-1-4939-3578-9_16.
Google Scholar
Djouad F, Bony C, Häupl T, Uzé G, Lahlou N, Louis-Plence P, Apparailly F, Canovas F, Rème T, Sany J, Jorgensen C, Noël D. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther. 2005; 7(6):R1304–15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1297577/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitzmann M, Bonnieu A, Duret C, Vernus B, Barro M, Laoudj-Chenivesse D, Verdi JM, Carnac G. Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells. J Cell Physiol. 2006; 208(3):538–48. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.20688.
Article
CAS
PubMed
Google Scholar
Pichard L, Raulet E, Fabre G, Ferrini JB, Ourlin J-C, Maurel P. Human hepatocyte culture In: Phillips IR, Shephard EA, editors. Cytochrome P450 Protocols. Totowa: Humana Press: 2006. p. 283–93. https://doi.org/10.1385/1-59259-998-2:283.
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2– ΔΔCT method. Methods. 2001; 25(4):402–8. http://www.sciencedirect.com/science/article/pii/S1046202301912629.
Article
CAS
PubMed
Google Scholar