Simoes I, Faro C. Structure and function of plant aspartic proteinases. Eur J Biochem. 2004;271(11):2067–75.
Article
CAS
PubMed
Google Scholar
Mutlu A, Gal S. Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant. 1999;105:569–76.
Article
CAS
Google Scholar
Davies DR. The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chern. 1990;19:189–215.
Article
CAS
Google Scholar
Dunn BM. Structure and mechanism of the pepsin-like family of aspartic peptidases. ChemRev. 2002;102(12):4431–58.
CAS
Google Scholar
Rawlings ND, Barrett AJ. Families of aspartic peptidases, and those of unknown catalytic mechanism. Methods Enzymol. 1995;248:105–20.
Article
CAS
PubMed
Google Scholar
Rawlings ND, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res. 1999;27(1):325–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandujano-Gonzalez V, Tellez-Jurado A, Anducho-Reyes MA, Arana-Cuenca A, Mercado-Flores Y. Purification and characterization of the extracellular aspartyl protease APSm1 from the phytopathogen fungus Stenocarpella maydis. Protein Expr Purif. 2016;117:1–5.
Article
CAS
PubMed
Google Scholar
Cooper JB. Aspartic proteinases in disease: a structural perspective. Curr Drug Targets. 2002;3(2):155–73.
Article
CAS
PubMed
Google Scholar
aSG CF. Aspartic proteinase content of the Arabidopsis genome. Curr Protein Pept Sci. 2005;6:493–500.
Article
Google Scholar
Park H, Yamanaka N, Mikkonen A, Kusakabe I, Kobayashi H. Purification and characterization of aspartic proteinase from sunflower seeds. Biosci Biotechnol Biochem. 2000;64(5):931–9.
Article
CAS
PubMed
Google Scholar
Chen F, Foolad MR. Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol Biol. 1997;35:821–31.
Article
CAS
PubMed
Google Scholar
Chen J, Ouyang Y, Wang L, Xie W, Zhang Q. Aspartic proteases gene family in rice: gene structure and expression, predicted protein features and phylogenetic relation. Gene. 2009;442(1–2):108–18.
Article
CAS
PubMed
Google Scholar
Timotijevic GS, Radovic SR, Maksimovic VR. Characterization of an aspartic proteinase activity in buckwheat (Fagopyrum esculentum Moench) seeds. J Agric Food Chem. 2003;51(7):2100–4.
Article
PubMed
Google Scholar
Belozersky MA, Sarbakanova ST, Dunaevsky YE. Aspartic proteinase from wheat seeds: isolation, properties and action on gliadin. Planta. 1989;177:321–6.
Article
CAS
PubMed
Google Scholar
An CI, Fukusaki E, Kobayashi A. Aspartic proteinases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta. 2002;214(5):661–7.
Article
CAS
PubMed
Google Scholar
Faro C, Ramalho-Santos M, Vieira M, Mendes A, Simões I, Andrade R, et al. Cloning and characterization of cDNA encoding Cardosin a, an RGD-containing plant aspartic proteinase. J Biol Chem. 1999;274(40):28724–9.
Article
CAS
PubMed
Google Scholar
Yao X, Xiong W, Ye T, Wu Y. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot. 2012;63(7):2579–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao H, Li R, Guo Y. Arabidopsis aspartic proteases A36 and A39 play roles in plant reproduction. Plant Signal Behav. 2017;12(4):e1304343.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo R, Tu M, Wang X, Zhao J, Wan R, Li Z, et al. Ectopic expression of a grape aspartic protease gene, AP13, in Arabidopsis thaliana improves resistance to powdery mildew but increases susceptibility to Botrytis cinerea. Plant Sci. 2016;248:17–27.
Article
CAS
PubMed
Google Scholar
Prasad BD, Creissen G, Lamb C, Chattoo BB. Heterologous expression and characterization of recombinant OsCDR1, a rice aspartic proteinase involved in disease resistance. Protein Expr Purif. 2010;72(2):169–74.
Article
CAS
PubMed
Google Scholar
Guo R, Carole B, Li X, Gao M, Zheng Y, Wang X. Genome-wide idetification, evolutionary and expression analysis of the aspartic protease gene suprefamily in grape. BMC Genomics. 2013;14:554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao S, Guo M, Wang C, Xu W, Shi T, Tong G, et al. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC Plant Biol. 2019;19(1):276.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glathe S, Kervinen J, Nimtz M, Li GH, Tobin GJ, Copeland TD, et al. Transport and activation of the vacuolar aspartic proteinase Phytepsin in barley (Hordeum vulgare L.). J Biol Chem. 1998;273(47):31230–6.
Article
CAS
PubMed
Google Scholar
Asakura T, Abe K, Arai S. Evidence for the occurrence of multiple aspartic proteinases in rice seeds. Biosci Biotechnol Biochem. 1995;59(9):1793–4.
Article
CAS
PubMed
Google Scholar
Kathleen D’HSOI, Bosch D, Van Damme J, Goethals M, Vandekerckhove J. Krebbers E. An aspartic proteinase present in seeds cleaves albumin precursors in vitro. J Biol Chem. 1993;268:20884–91.
Article
Google Scholar
Asakura T, Watanabe H, Abe K, Arai S. Rice aspartic proteinase, oryzasin, expressed during seed ripening and germination, has a gene organization distinct from those of animal and microbial aspartic proteinases. Eur J Biochem. 1995;232(1):77–83.
Article
CAS
PubMed
Google Scholar
Tamura T, Terauchi K, Kiyosaki T, Asakura T, Funaki J, Matsumoto I, et al. Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds. J Plant Physiol. 2007;164(4):470–7.
Article
CAS
PubMed
Google Scholar
Shen W, Yao X, Ye T, Ma S, Liu X, Yin X, et al. Arabidopsis aspartic protease ASPG1 affects seed dormancy, seed longevity and seed germination. Plant Cell Physiol. 2018;59(7):1415–31.
CAS
PubMed
Google Scholar
TSkes ZA. Digestive enzymes secreted by the carnivorous plant nepenthes macferlanei L. Planta. 1974;119:39–46.
Article
Google Scholar
Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 2004;23:980–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prasad BD, Creissen G, Lamb C, Chattoo BB. Overexpression of Rice (Oryza sativa L.) OsCDR1 leads to Constitutive activation of defense responses in Rice and Arabidopsis. MPMI. 2009;22(12):1635–44.
Article
CAS
PubMed
Google Scholar
Huang J, Zhao X, Cheng K, Jiang Y, Ouyang Y, Xu C, et al. OsAP65, a rice aspartic protease, is essential for male fertility and plays a role in pollen germination and pollen tube growth. J Exp Bot. 2013;64(11):3351–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soares A, Niedermaier S, Faro R, Loos A, Manadas B, Faro C, et al. An atypical aspartic protease modulates lateral root development in Arabidopsis thaliana. J Exp Bot. 2019;70(7):2157–71.
Article
CAS
PubMed
Google Scholar
Runeberg-Roos P, Saarma M. Phytepsin, a barley vacuolar aspartic proteinase, is highly expressed during autolysis of developing tracheary elements and sieve cells. Plant J. 1998;15(1):139–45.
Article
CAS
PubMed
Google Scholar
Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, et al. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun. 2013;4:1445.
Article
PubMed
CAS
Google Scholar
Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y. An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep. 2005;6(3):282–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pyo H, Demura T, Fukuda H. TERE; a novel cis-element responsible for a coordinated expression of genes related to programmed cell death and secondary wall formation during differentiation of tracheary elements. Plant J. 2007;51(6):955–65.
Article
CAS
PubMed
Google Scholar
Zhong R, Lee C, Ye ZH. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant. 2010;3(6):1087–103.
Article
CAS
PubMed
Google Scholar
Zhong R, Ye ZH. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol. 2012;53(2):368–80.
Article
CAS
PubMed
Google Scholar
Zhong R, McCarthy RL, Haghighat M, Ye ZH. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS One. 2013;8(7):e69219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohashi-Ito K, Oda Y, Fukuda H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell. 2010;22(10):3461–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao H, Zhao S, International Network for B, Rattan FB, Liu H, Yang H, et al. Announcing the genome atlas of bamboo and rattan (GABR) project: promoting research in evolution and in economically and ecologically beneficial plants. Giga Sci. 2017;6(7):1–7.
Article
CAS
Google Scholar
Zhao H, Gao Z, Wang L, Wang J, Wang S, Fei B, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). Giga Sci. 2018;7(10):1–12.
Article
CAS
Google Scholar
Guo L, Sun X, Li Z, Wang Y, Fei Z, Jiao C, et al. Morphological dissection and cellular and transcriptome characterizations of bamboo pith cavity formation reveal a pivotal role of genes related to programmed cell death. Plant Biotechnol J. 2019;17(5):982–97.
Article
CAS
PubMed
Google Scholar
Cui K, He CY, Zhang JG, Duan AG, Zeng YF. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo. J Proteome Res. 2012;11(4):2492–507.
Article
CAS
PubMed
Google Scholar
Li L, Cheng Z, Ma Y, Bai Q, Li X, Cao Z, et al. The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth. Plant Biotechnol J. 2018;16(1):72–85.
Article
CAS
PubMed
Google Scholar
Shan, Yang, Xu, Zhu, Gao. Genome-wide investigation of the NAC gene family and its potential association with the secondary Cell Wall in Moso bamboo. Biomolecules. 2019;9(10):609.
Article
CAS
PubMed Central
Google Scholar
Li L, Yang K, Wang S, Lou Y, Zhu C, Gao Z. Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses. Plant Cell Rep. 2020;39(6):751–63.
Article
CAS
PubMed
Google Scholar
Hou D, Cheng Z, Xie L, Li X, Li J, Mu S, et al. The R2R3MYB gene family in Phyllostachys edulis: genome-wide analysis and identification of stress or development-related R2R3MYBs. Front Plant Sci. 2018;9:738.
Article
PubMed
PubMed Central
Google Scholar
Biswas P, Chakraborty S, Dutta S, Pal A, Das M. Bamboo flowering from the perspective of comparative genomics and Transcriptomics. Front Plant Sci. 2016;7:1900.
Article
PubMed
PubMed Central
Google Scholar
Dutta S, Biswas P, Chakraborty S, Mitra D, Pal A, Das M. Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo. BMC Genomics. 2018;19(1):190.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chiu WB, Lin CH, Chang CJ, Hsieh MH, Wang AY. Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytol. 2006;170(1):53–63.
Article
CAS
PubMed
Google Scholar
Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet. 2013;45(4):456–61 461e451-2.
Article
CAS
PubMed
Google Scholar
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye ZH. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall Biosyntheticn genes. Plant Cell Physiol. 2012;53(2):368–80.
Article
PubMed
CAS
Google Scholar
Kim WC, Ko JH, Han KH. Identification of a cis -acting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis. Microbiology. 2012;78(4):489–501.
CAS
Google Scholar
Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and regulation of programmed cell death in plant development. Annu Rev Cell Dev Biol. 2016;32:441–68.
Article
CAS
PubMed
Google Scholar
Zhang L, Xing D. Methyl Jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol. 2008;49(7):1092–111.
Article
CAS
PubMed
Google Scholar
Kapoor K, Mira MM, Ayele BT, Nguyen TN, Hill RD, Stasolla C. Phytoglobins regulate nitric oxide-dependent abscisic acid synthesis and ethylene-induced program cell death in developing maize somatic embryos. Planta. 2018;247(6):1277–91.
Article
CAS
PubMed
Google Scholar
Zhang H, Wang H, Zhu Q, Gao Y, Wang H, Zhao L, et al. Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications. BMC Plant Biol. 2018;18(1):125.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morris K, Linkies A, Müller K, Oracz K, Wang X, Lynn JR, et al. Regulation of seed germination in the close Arabidopsis relative (Lepidium sativum): a global tissue-specific transcript analysis. Plant Physiol. 2011;155(4):1851–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beers EP, Jones AM, Dickerman AW. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry. 2004;65(1):43–58.
Article
CAS
PubMed
Google Scholar
Chen X, Pfeil JE, Gal S. The three typical aspartic proteinase genes of Arabidopsis thaliana are differentially expressed. Eur J Biochem. 2002;269(18):4675–84.
Article
CAS
PubMed
Google Scholar
Ye S, Chen G, Kohnen MV, Wang W, Cai C, Ding W, et al. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). Plant Biotechnol J. 2020;18(7):1501–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eddy SR. Multiple alignment using hidden Markov models. Proc Int Conf Intell Syst Mol Biol. 1995;3:114–20.
CAS
PubMed
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–32.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222–6.
Article
CAS
PubMed
Google Scholar
He Z, Zhang H, Gao S, Lercher MJ, Chen WH, Hu S. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 2016;44(W1):W236–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian B, Gao S, Lercher MJ, Hu S, Chen WH. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019;47(W1):W270–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Gao S, Lercher MJ, Hu S, Chen WH. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res. 2012;40:W569–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics. 2007;8:460.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61(6):1061–7.
Article
PubMed
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
PubMed
Google Scholar
Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity. 2002;93(1):93–4.
Article
Google Scholar
Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, et al. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol. 2014;14:93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4:10.
Article
PubMed
PubMed Central
Google Scholar
Xie T, Chen C, Li C, Liu J, Liu C, He Y. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics. 2018;19(1):490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vatansever R, Koc I, Ozyigit SU II, Uras ME, Anjum NA, Pereira E, et al. Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (Solanum tuberosum L.). Planta. 2016;244(6):1167–83.
Article
CAS
PubMed
Google Scholar
Li L, Mu S, Cheng Z, Cheng Y, Zhang Y, Miao Y, et al. Characterization and expression analysis of the WRKY gene family in moso bamboo. Sci Rep. 2017;7(1):6675.
Article
PubMed
PubMed Central
CAS
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9.
Article
CAS
PubMed
PubMed Central
Google Scholar