Wolford JH, Polin D. Lipid accumulation and hemorrhage in livers of laying chickens. A study on fatty liver-hemorrhagic syndrome (FLHS). Poult Sci. 1972;51(5):1707–13 Available from: https://pubmed.ncbi.nlm.nih.gov/4645738/.
Article
CAS
PubMed
Google Scholar
Grimes TM. Causes of disease in two commercial flocks of laying hens. Aust Vet J. 1975;51(7):337–43.
Article
CAS
PubMed
Google Scholar
Zhang Y, Liu Z, Liu R, Wang J, Zheng M, Li Q, et al. Alteration of hepatic gene expression along with the inherited phenotype of acquired fatty liver in chicken. Genes. 2018;9(4):199. Available from: https://pubmed.ncbi.nlm.nih.gov/29642504/.
Rozenboim I, Mahato J, Cohen NA, Tirosh O. Low protein and high-energy diet: a possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens. Poult Sci. 2016;95(3):612–21 Available from: https://pubmed.ncbi.nlm.nih.gov/26755655/.
Article
CAS
PubMed
Google Scholar
Shini A, Shini S, Bryden WL. Fatty liver haemorrhagic syndrome occurrence in laying hens: impact of production system. Avian Pathol. 2019;48(1):25–34 Available from: https://pubmed.ncbi.nlm.nih.gov/30345810/.
Article
CAS
PubMed
Google Scholar
Ferreira DM, Simao AL, Rodrigues CM, Castro RE. Revisiting the metabolic syndrome and paving the way for microRNAs in non-alcoholic fatty liver disease. FEBS J. 2014;281(11):2503–24. https://doi.org/10.1111/febs.12806.
Article
CAS
PubMed
Google Scholar
Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48(4):434–41 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633701/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shini A, Shini S, Filippich LJ, Anderson ST, Bryden WL. Role of inflammation in the pathogenesis of fatty liver haemorrhagic syndrome in laying hens. In: Proceedings of the Australian Poultry Science Symposium: 2012. Sydney: University of Sydney Poultry Research Foundation; 2012. p. 193. Available from: https://espace.library.uq.edu.au/view/UQ:272199.
Google Scholar
Wang X, Xing C, Yang F, Zhou S, Li G, Zhang C, et al. Abnormal expression of liver autophagy and apoptosis-related mRNA in fatty liver haemorrhagic syndrome and improvement function of resveratrol in laying hens. Avian Pathol. 2020;49(2):171–8 Available from: https://pubmed.ncbi.nlm.nih.gov/31774299/.
Article
CAS
PubMed
Google Scholar
Del Campo JA, Gallego-Durán R, Gallego P, Grande L. Genetic and epigenetic regulation in nonalcoholic fatty liver disease (NAFLD). Int J Mol Sci. 2018;19(3):911 Available from: https://pubmed.ncbi.nlm.nih.gov/29562725/.
Article
PubMed Central
CAS
Google Scholar
Rosen ED, Kaestner KH, Natarajan R, Patti ME, Sallari R, Sander M, et al. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes. 2018;67(10):1923–31 Available from: https://pubmed.ncbi.nlm.nih.gov/30237160/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahrens M, Ammerpohl O, von Schönfels W, Kolarova J, Bens S, Itzel T, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18(2):296–302 Available from: https://pubmed.ncbi.nlm.nih.gov/23931760/.
Article
CAS
PubMed
Google Scholar
Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145(5):1076–87 Available from: https://pubmed.ncbi.nlm.nih.gov/23916847/.
Article
CAS
PubMed
Google Scholar
Tan X, Liu R, Xing S, Zhang Y, Li Q, Zheng M, et al. Genome-wide detection of key genes and epigenetic markers for chicken fatty liver. Int J Mol Sci. 2020;21(5):1800. Available from: https://pubmed.ncbi.nlm.nih.gov/32151087/.
Jones P. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92 Available from: https://www.nature.com/articles/nrg3230.
Article
CAS
PubMed
Google Scholar
Liu Z, Li Q, Liu R, Zhao G, Zhang Y, Zheng M, et al. Expression and methylation of microsomal triglyceride transfer protein and acetyl-CoA carboxylase are associated with fatty liver syndrome in chicken. Poult Sci. 2016;95(6):1387–95 Available from: https://pubmed.ncbi.nlm.nih.gov/27083546/.
Article
CAS
PubMed
Google Scholar
Sookoian S, Rosselli MS, Gemma C, Burgueno AL, Fernandez Gianotti T, Castano GO, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52(6):1992–2000 Available from: https://pubmed.ncbi.nlm.nih.gov/20890895/.
Article
CAS
PubMed
Google Scholar
McCarty R. Cross-fostering: elucidating the effects of genexenvironment interactions on phenotypic development. Neurosci Biobehav Rev. 2017;73:219–54 Available from: https://pubmed.ncbi.nlm.nih.gov/28034661/.
Article
PubMed
Google Scholar
Gluckman PD. Epigenetics and metabolism in 2011: epigenetics, the life-course and metabolic disease. Nat Rev Endocrinol. 2011;8(2):74–6 Available from: https://www.nature.com/articles/nrendo.2011.226?cacheBust=1508233648900.
Article
PubMed
CAS
Google Scholar
Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 2014;15(2):R37 Available from: https://pubmed.ncbi.nlm.nih.gov/24555846/.
Article
PubMed
PubMed Central
Google Scholar
Fu Y, Li J, Tang Q, Zou C, Shen L, Jin L, et al. Integrated analysis of methylome, transcriptome and miRNAome of three pig breeds. Epigenomics. 2018;10(5):597–612. https://doi.org/10.2217/epi-2017-0087.
Article
CAS
PubMed
Google Scholar
Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38(12):1378–85 Available from: https://pubmed.ncbi.nlm.nih.gov/17072317/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014;42(8):e69 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005660/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun D, Xi Y, Rodriguez B, Park HJ, Tong P, Meong M, et al. MOABS: model based analysis of bisulfite sequencing data. Genome Biol. 2014;15(2):R38 Available from: https://pubmed.ncbi.nlm.nih.gov/24565500/.
Article
PubMed
PubMed Central
Google Scholar
Towle HC, Kaytor EN, Shih HM. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr. 1997;17:405–33 Available from: https://pubmed.ncbi.nlm.nih.gov/9240934/.
Article
CAS
PubMed
Google Scholar
Pierce AA, Pickens MK, Siao K, Grenert JP, Maher JJ. Differential hepatotoxicity of dietary and DNL-derived palmitate in the methionine-choline-deficient model of steatohepatitis. BMC Gastroenterol. 2015;15:72 Available from: https://pubmed.ncbi.nlm.nih.gov/26103964/.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suzuki K, Oikawa T, Nochioka K, Miura M, Kasahara S, Sato M, et al. Elevated serum non-HDL (high-density lipoprotein) cholesterol and triglyceride levels as residual risks for myocardial infarction recurrence under statin treatment. Arterioscler Thromb Vasc Biol. 2019;39(5):934–44 Available from: https://pubmed.ncbi.nlm.nih.gov/30866657/.
Article
CAS
PubMed
Google Scholar
Kim H, Worsley O, Yang E, Purbojati RW, Liang AL, Tan W, et al. Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cell Mol Life Sci. 2019;76(21):4341–54 Available from: https://pubmed.ncbi.nlm.nih.gov/31119300/.
Article
CAS
PubMed
Google Scholar
Hong M, Hwang JT, Shin EJ, Hur HJ, Kang K, Choi HK, et al. Genome-wide analysis of DNA methylation identifies novel differentially methylated regions associated with lipid accumulation improved by ethanol extracts of Allium tubersosum and Capsella bursa-pastoris in a cell model. PLoS One. 2019;14(6):e0217877 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553759/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perry RJ, Zhang D, Guerra MT, Brill AL, Goedeke L, Nasiri AR, et al. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature. 2020;579(7798):279–83 Available from: https://pubmed.ncbi.nlm.nih.gov/32132708/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernández-Guerra M, Hadjihambi A, Jalan R. Gap junctions in liver disease: implications for pathogenesis and therapy. J Hepatol. 2019;70(4):759–72 Available from: https://www.journal-of-hepatology.eu/article/S0168-8278(18)32643-6/fulltext.
Article
PubMed
CAS
Google Scholar
Goto K, Hozumi Y, Nakano T, Saino-Saito S, Martelli AM. Lipid messenger, diacylglycerol, and its regulator, diacylglycerol kinase, in cells, organs, and animals: history and perspective. Tohoku J Exp Med. 2008;214(3):199–212 Available from: https://www.jstage.jst.go.jp/article/tjem/214/3/214_3_199/_article/-char/ja/.
Article
CAS
PubMed
Google Scholar
Zhang C, Luo X, Chen J, Zhou B, Yang M, Liu R, et al. Osteoprotegerin promotes liver steatosis by targeting the ERK-PPAR-γ-CD36 pathway. Diabetes. 2019;68(10):1902–14 Available from: https://pubmed.ncbi.nlm.nih.gov/31292134/.
Article
CAS
PubMed
Google Scholar
Zhang S, Qin C, Cao G, Guo L, Feng C, Zhang W. Genome-wide analysis of DNA methylation profiles in a senescence-accelerated mouse prone 8 brain using whole-genome bisulfite sequencing. Bioinformatics. 2017;33(11):1591–5 Available from: https://pubmed.ncbi.nlm.nih.gov/28130229/.
Article
CAS
PubMed
Google Scholar
Bolger A, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24695404/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. 2019;35(3):421–32 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/30020410/.
Article
CAS
PubMed
Google Scholar
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–2 Available from: https://pubmed.ncbi.nlm.nih.gov/21493656/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park Y, Wu H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics. 2016;32(10):1446–53 Available from: https://pubmed.ncbi.nlm.nih.gov/26819470/.
Article
CAS
PubMed
Google Scholar
Wu H, Xu T, Feng H, Chen L, Li B, Yao B, et al. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 2015;43(21):e141 Available from: https://pubmed.ncbi.nlm.nih.gov/26184873/.
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg S. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655817/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–78 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334321/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9 Available from: https://academic.oup.com/bioinformatics/article/31/2/166/2366196.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550 Available from: https://pubmed.ncbi.nlm.nih.gov/25516281/.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–22 Available from: https://pubmed.ncbi.nlm.nih.gov/21715386/.
Article
CAS
PubMed
PubMed Central
Google Scholar