Badebo A, Gelalcha S, Ammar K, Nachit M, Abdalla O, Mcintosh R. Overview of durum wheat research in Ethiopia: challenges and prospects. In: McIntosh R, editor. Proceedings, oral papers and posters, 2009 Technical Workshop, Borlaug Global Rust Initiative, Cd. Obregón, Sonora, Mexico, 17–20 March, 2009. Obregón: Borlaug Global Rust Initiative, Cd; 2009. p. 143–9. http://www.globalrust.org/db/attachme.
Google Scholar
Mengistu DK, Kiros AY, Pè ME. Phenotypic diversity in Ethiopian durum wheat (Triticum turgidum var. durum) landraces. Crop J. 2015;3:190–9. https://doi.org/10.1016/j.cj.2015.04.003.
Article
Google Scholar
Vavilov NI. The origin, variation, immunity, and breeding of cultivated plants. Soil Sci. 1951;72:482. https://doi.org/10.1097/00010694-195112000-00018.
Zohary D. Centers of diversity and centers of origin. In: Frankel OH, Bennett E, editors. Genetic resources of plants- their exploration and conservation. Oxford & Edinburgh: Blackwell Scientific Publications; 1970. p. 33–42.
Google Scholar
Kabbaj H, Sall AT, Al-Abdallat A, Geleta M, Amri A, Filali-Maltouf A, et al. Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern Germplasm reveals the history of alleles exchange. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01277.
Bechere E, Belay G, Mitiku D, Merker A. Phenotypic diversity of tetraploid wheat landraces from northern and north-central regions of Ethiopia. Hereditas. 2004;124:165–72. https://doi.org/10.1111/j.1601-5223.1996.00165.x.
Article
Google Scholar
Tesemma T, Bechere E. Developing elite durum wheat landrace selections (composites) for Ethiopian peasant farm use: raising productivity while keeping diversity alive. Euphytica. 1998;102:323–8.
Article
Google Scholar
Teklu Y, Hammer K. Diversity of Ethiopian tetraploid wheat germplasm: breeding opportunities for improving grain yield potential and quality traits. Plant Genet Resour. 2009;7:1–8. https://doi.org/10.1017/S1479262108994223.
Article
Google Scholar
Alamerew S, Chebotar S, Huang X, Röder M, Börner A. Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genet Resour Crop Evol. 2004;51:559–67. https://doi.org/10.1023/B:GRES.0000024164.80444.f0.
Article
CAS
Google Scholar
Teklu Y, Hammer K, Huang XQ, Röder MS. Analysis of microsatellite diversity in Ethiopian Tetraploid wheat landraces. Genet Resour Crop Evol. 2006;53:1115–26. https://doi.org/10.1007/s10722-005-1146-7.
Article
CAS
Google Scholar
Haile JK, Hammer K, Badebo A, Nachit MM, Röder MS. Genetic diversity assessment of Ethiopian tetraploid wheat landraces and improved durum wheat varieties using microsatellites and markers linked with stem rust resistance. Genet Resour Crop Evol. 2013;60:513–27. https://doi.org/10.1007/s10722-012-9855-1.
Article
CAS
Google Scholar
Mengistu DK, Kidane YG, Catellani M, Frascaroli E, Fadda C, Pè ME, et al. High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol J. 2016;14:1800–12. https://doi.org/10.1111/pbi.12538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amri A, Hatchett JH, Cox TS, El Bouhssini M, Sears RG. Resistance to hessian Fly from north African durum wheat Germplasm. Crop Sci. 1990;30:378. https://doi.org/10.2135/cropsci1990.0011183X003000020027x.
Article
Google Scholar
Kubo K, Elouafi I, Watanabe N, Nachit MM, Inagaki MN, Iwama K, et al. Quantitative trait loci for soil-penetrating ability of roots in durum wheat. Plant Breed. 2007;126:375–8. https://doi.org/10.1111/j.1439-0523.2007.01368.x.
Article
Google Scholar
Liu W, Maccaferri M, Rynearson S, Letta T, Zegeye H, Tuberosa R, et al. Novel Sources of Stripe Rust Resistance Identified by Genome-Wide Association Mapping in Ethiopian Durum Wheat (Triticum turgidum ssp. durum). Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.00774.
Mengistu DK, Kidane YG, Fadda C, Pè ME. Genetic diversity in Ethiopian durum wheat ( Triticum turgidum var durum ) inferred from phenotypic variations. Plant Genet Resour Charact Util. 2018;16:39–49. https://doi.org/10.1017/S1479262116000393.
Article
CAS
Google Scholar
Negassa A, Koo J, Sonder K, Shiferaw B, Smale M, Braun H, et al. The Potential for Wheat Production in Sub-Saharan Africa: Analysis of Biophysical Suitability and Economic Profitability. In: Wheat for food security in Africa: Science and policy dialogue about the future of wheat in Africa. Mexico: CIMMYT; 2012. p. 64. https://repository.cimmyt.org/handle/10883/4015.
Google Scholar
Lynch J. Root architecture and plant productivity. Plant Physiol. 1995;109:7–13. https://doi.org/10.1104/pp.109.1.7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canè MA, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalongo C, et al. Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breed. 2014;34:1629–45. https://doi.org/10.1007/s11032-014-0177-1.
Article
PubMed
PubMed Central
Google Scholar
Mickelbart MV, Hasegawa PM, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet. 2015;16:237–51. https://doi.org/10.1038/nrg3901.
Article
CAS
PubMed
Google Scholar
Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, et al. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot. 2016;67:1161–78. https://doi.org/10.1093/jxb/erw039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Q, Fernando KMC, Mayes S, Sparkes DL. Identifying seedling root architectural traits associated with yield and yield components in wheat. Ann Bot. 2017;119:1115–29. https://doi.org/10.1093/aob/mcx001.
Article
PubMed
PubMed Central
Google Scholar
Reynolds M, Tuberosa R. Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol. 2008;11:171–9. https://doi.org/10.1016/j.pbi.2008.02.005.
Article
PubMed
Google Scholar
Hawkesford MJ. Reducing the reliance on nitrogen fertilizer for wheat production. J Cereal Sci. 2014;59:276–83. https://doi.org/10.1016/j.jcs.2013.12.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
King J. Modelling cereal root Systems for Water and Nitrogen Capture: towards an economic optimum. Ann Bot. 2003;91:383–90. https://doi.org/10.1093/aob/mcg033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch JP. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot. 2013;112:347–57. https://doi.org/10.1093/aob/mcs293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meister R, Rajani MS, Ruzicka D, Schachtman DP. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 2014;19:779–88. https://doi.org/10.1016/j.tplants.2014.08.005.
Article
CAS
PubMed
Google Scholar
Steele KA, Price AH, Witcombe JR, Shrestha R, Singh BN, Gibbons JM, et al. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor Appl Genet. 2013;126:101–8. https://doi.org/10.1007/s00122-012-1963-y.
Article
CAS
PubMed
Google Scholar
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 2013;45:1097–102. https://doi.org/10.1038/ng.2725.
Article
CAS
PubMed
Google Scholar
Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, et al. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot. 2014;65:6251–63. https://doi.org/10.1093/jxb/eru232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitomi Y, Kanno N, Kawai S, Mizubayashi T, Fukuoka S, Uga Y. QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice. 2015;8:16. https://doi.org/10.1186/s12284-015-0049-2.
Article
PubMed
PubMed Central
Google Scholar
Manschadi AM, Hammer GL, Christopher JT, DeVoil P. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil. 2008;303:115–29. https://doi.org/10.1007/s11104-007-9492-1.
Article
CAS
Google Scholar
Miguel MA, Postma JA, Lynch JP. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition. Plant Physiol. 2015;167:1430–9. https://doi.org/10.1104/pp.15.00145.
Article
CAS
PubMed
PubMed Central
Google Scholar
An D, Su J, Liu Q, Zhu Y, Tong Y, Li J, et al. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil. 2006;284:73–84. https://doi.org/10.1007/s11104-006-0030-3.
Article
CAS
Google Scholar
Sanguineti MC, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, et al. Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol. 2007;151:291–305. https://doi.org/10.1111/j.1744-7348.2007.00198.x.
Article
Google Scholar
Petrarulo M, Marone D, Ferragonio P, Cattivelli L, Rubiales D, De Vita P, et al. Genetic analysis of root morphological traits in wheat. Mol Gen Genomics. 2015;290:785–806. https://doi.org/10.1007/s00438-014-0957-7.
Article
CAS
Google Scholar
Iannucci A, Marone D, Russo MA, De Vita P, Miullo V, Ferragonio P, et al. Mapping QTL for root and shoot morphological traits in a durum wheat × T. dicoccum segregating population at seedling stage. Int J Genomics. 2017;2017:1–17. https://doi.org/10.1155/2017/6876393.
Article
CAS
Google Scholar
Roselló M, Royo C, Sanchez-Garcia M, Soriano JM. Genetic dissection of the seminal root system architecture in Mediterranean durum wheat landraces by genome-wide association study. Agronomy. 2019;9:364. https://doi.org/10.3390/agronomy9070364.
Article
CAS
Google Scholar
Ruiz M, Giraldo P, González JM. Phenotypic variation in root architecture traits and their relationship with eco-geographical and agronomic features in a core collection of tetraploid wheat landraces (Triticum turgidum L.). Euphytica. 2018;214:54. https://doi.org/10.1007/s10681-018-2133-3.
Article
CAS
Google Scholar
Maccaferri M, Cane’ M, Sanguineti MC, Salvi S, Colalongo MC, Massi A, et al. A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping. BMC Genomics. 2014;15:873. https://doi.org/10.1186/1471-2164-15-873.
Article
PubMed
PubMed Central
Google Scholar
Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, et al. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J. 2015;13:648–63. https://doi.org/10.1111/pbi.12288.
Article
CAS
PubMed
Google Scholar
Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol. 2002;48:697–712. https://doi.org/10.1023/a:1014897607670.
Article
CAS
PubMed
Google Scholar
Soriano JM, Alvaro F. Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep. 2019;9:10537. https://doi.org/10.1038/s41598-019-47038-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christopher J, Christopher M, Jennings R, Jones S, Fletcher S, Borrell A, et al. QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor Appl Genet. 2013;126:1563–74. https://doi.org/10.1007/s00122-013-2074-0.
Article
CAS
PubMed
Google Scholar
Ren Y, He X, Liu D, Li J, Zhao X, Li B, et al. Major quantitative trait loci for seminal root morphology of wheat seedlings. Mol Breed. 2012;30:139–48. https://doi.org/10.1007/s11032-011-9605-7.
Article
Google Scholar
Liu X, Li R, Chang X, Jing R. Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica. 2013;189:51–66. https://doi.org/10.1007/s10681-012-0690-4.
Article
Google Scholar
Alahmad S, El Hassouni K, Bassi FM, Dinglasan E, Youssef C, Quarry G, et al. A major root architecture QTL responding to water limitation in durum wheat. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00436.
Wojciechowski T, Gooding MJ, Ramsay L, Gregory PJ. The effects of dwarfing genes on seedling root growth of wheat. J Exp Bot. 2009;60:2565–73. https://doi.org/10.1093/jxb/erp107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narayanan S, Mohan A, Gill KS, Prasad PVV. Variability of root traits in spring wheat Germplasm. PLoS One. 2014;9:e100317. https://doi.org/10.1371/journal.pone.0100317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kabir MR, Liu G, Guan P, Wang F, Khan AA, Ni Z, et al. Mapping QTLs associated with root traits using two different populations in wheat (Triticum aestivum L.). Euphytica. 2015;206:175–90. https://doi.org/10.1007/s10681-015-1495-z.
Article
Google Scholar
Bai C, Liang Y, Hawkesford MJ. Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot. 2013;64:1745–53. https://doi.org/10.1093/jxb/ert041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43:S25–30. https://doi.org/10.2144/000112517.
Article
Google Scholar
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J. 2014;12:787–96. https://doi.org/10.1111/pbi.12183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97. https://doi.org/10.1086/521987.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
CAS
PubMed
PubMed Central
Google Scholar
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5. https://doi.org/10.1093/bioinformatics/bth457.
Article
CAS
PubMed
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5. https://doi.org/10.1093/bioinformatics/btm308.
Article
CAS
PubMed
Google Scholar
Hill WG, Weir BS. Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol. 1988;33:54–78 http://www.ncbi.nlm.nih.gov/pubmed/3376052.
Article
CAS
PubMed
Google Scholar
R Development Core team. R: a language and environment for statistical computing. Vienna: R Foundation for statistical Computing; 2013. http://www.r-project.org/.
Google Scholar
Breseghello F, Sorrells ME. Association mapping of kernel size and milling quality in wheat ( Triticum aestivum L.) cultivars. Genetics. 2006;172:1165–77. https://doi.org/10.1534/genetics.105.044586.
Article
PubMed
PubMed Central
Google Scholar
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8. https://doi.org/10.1038/ng1702.
Article
CAS
PubMed
Google Scholar
Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004;74:106–20. https://doi.org/10.1086/381000.
Article
CAS
PubMed
Google Scholar
Laperche A, Devienne-Barret F, Maury O, Le Gouis J, Ney B. A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet. 2006;113:1131–46. https://doi.org/10.1007/s00122-006-0373-4.
Article
CAS
PubMed
Google Scholar
Guo Y, Kong F, Xu Y, Zhao Y, Liang X, Wang Y, et al. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet. 2012;124:851–65. https://doi.org/10.1007/s00122-011-1749-7.
Article
CAS
PubMed
Google Scholar
Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H, et al. Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant Soil. 2012;354:395–405. https://doi.org/10.1007/s11104-011-1075-5.
Article
CAS
Google Scholar
Cao P, Ren Y, Zhang K, Teng W, Zhao X, Dong Z, et al. Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat. Mol Breed. 2014;33:975–85. https://doi.org/10.1007/s11032-013-0013-z.
Article
Google Scholar
Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, et al. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot. 2015;66:2283–92. https://doi.org/10.1093/jxb/erv006.
Article
CAS
PubMed
PubMed Central
Google Scholar